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Abstract: For a finite group G and a subset X # 0 of G, the commuting graph, indicated by G =
C(G, X), is the simple connected graph with vertex set X and two distinct vertices x and y are edge
connected in G if and only if they commute in X. The A, matrix of G is specified as A,(G) = aD(G) +
(1-2)A(G), a € [0, 1], where D(G) is the diagonal matrix of vertex degrees while A(G) is the adjacency
matrix of G. In this article, we investigate the A, matrix for commuting graphs of finite groups and we
also find the A, eigenvalues of the dihedral, the semidihedral and the dicyclic groups. We determine
the upper bounds for the largest A, eigenvalue for these graphs. Consequently, we get the adjacency
eigenvalues, the Laplacian eigenvalues, and the signless Laplacian eigenvalues of these graphs for
particular values of a. Further, we show that these graphs are Laplacian integral.
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1. Introduction

In this article, all our graphs are simple, finite and connected. A graph G = G(V(G), E(G)) is an
ordered pair consisting of the vertex set V(G) and the edge set E(G). The cardinality of V(G) is referred
to as the order of G represented by n and the cardinality of E(G) is called the size of G, symbolized by
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m. The set of vertices adjacent to v € V(G), indicated by N(v), is known as the neighborhood of v. The
cardinality of N(v) is the degree of a vertex v, symbolized by d(v). A graph G is called regular if the
degree of every vertex is same. For other notations and terminology, see [14].

Let M,(R) be the set of square matrices over the field R and M* := {M € M,(R) : MT = M}, where
M is the set of real symmetric matrices. The adjacency matrix of G, symbolized by A(G), is described
in the following way:

AG) = (@) 1, ifiadjacent j;
=i =

! 0, otherwise.
Clearly, A(G) is in M*, so all its eigenvalues are in R and can be indexed from the largest to the least
as: Ay > A, > --- > A,. The multiset of eigenvalues of A(G) is the spectrum of G, and A, is called the
spectral radius (or spectral norm) of G.

Let D(G) = diag(d(vy),d(v»),...,d(v,)) be the diagonal matrix of vertex degrees of G. The matrices
L(G) = A(G) — D(G) and Q(G) = A(G) + D(G) are known as the Laplacian matrix and the signless
Laplacian matrix of G, respectively. The matrix L(G) is positive semi-definite and the matrix Q(G)
is positive semi-definite (definite) and their spectrum is in R. Laplacian eigenvalues are denoted by
A > AL > ... > Ak = 0 while the signless Laplacian eigenvalues are denoted by 12 > 12 > --- > A%,
It is well known that A% = 0 is always the eigenvalue of L(G) and A% | > 0 for connected graphs, which
is referred to as the algebraic connectivity of G.

Nikiforov [23] suggested examining the convex combinations A, (G) of the adjacency matrix A(G)
and the diagonal matrix D(G) specified by A,(G) = (1 —a)A(G)+aD(G), where 0 < a < 1. Obviously,
Ao(G) = A(G),A1(G) = D(G)and Q(G) =2A ! (G) = A(G)+D(G). Also A,(G)-A,(G) = (a—y)L(G) =
(—y)(D(G)—-A(G)), where L(G) is the Laplacian matrix of G. Thus, A,(G) matrix merges the spectral
theories of A(G), L(G) and Q(G) as well as their uncountably many combinations. Recent articles on
the spectral properties of the A matrix can be obtained in [21,23-25,27,33] and the references in those
articles.

The matrix A,(G) belongs to the class M*, so its eigenvalues can be arranged in decreasing order
as A > A > --- > Ay, where A is called the a spectral radius ( or A(A,) generalized adjacency
spectral radius) of G. For a connected graph G, the matrix A,(G) (for @ # 1) is an irreducible and non-
negative. Consequently, according to the Perron-Frobenius theorem, A(A,(G)) is the simple eigenvalue,
and A(A,(G)) has only one positive unit eigenvector X, which is known as the generalized adjacency
Perron vector of G.

Consider G is a finite group with n elements and e is the identity element. If X is a non empty
subset of G, then the commuting graph of G related to X, is indicated by C(G, X), and is defined with
X as the vertex set and two different vertices x and y are edge connected in C(G, X) if and only if they
commute in X. The commuting graphs of matrix rings and semirings over the finite fields were studied
in [1, 15]. The metric dimension, the resolving polynomial, the clique number and the chromatic
number of the commuting graphs of the dihedral groups were discussed in [4, 11]. Recent results on
the commuting graphs of the generalized dihedral groups can be found in [12,20]. The adjacency
spectrum of commuting graphs were studied in [5, 13], the Laplacian as well as the signless Laplacian
spectra of the commuting graphs on the dihedral groups were explored in [3,32]. For other spectral
properties and energies of commuting graphs, see [16, 18].
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2. A, eigenvalues of commuting graphs of finite non-abelian groups

Any column vector X = (X1, X2,...,%,)’ € R" can be regarded as a function defined by V(G) which
associates every vertex v; to x;, 1.e., X(v;) = x; foralli = 1,...,n. Also, the quadratic form of the A,
matrix is:

(X, Xy = Qa=1) Y Zdwy+(1-a) > (x+x),

ueV(G) uveE(G)

and A is the A, eigenvalue of G that corresponds to the eigenvector X whenever X # 0 and for every
v; € V(G), we have:

i = adv)x +(1-a) > x;, (2.1)
ViVjGE(G)
or equivalently
(A-ad)xi=(-a) > x; (2.2)
V,‘VjEE(G)

Equations (2.1) and (2.2) are known as eigenequations for the matrix A, of G.
Our first result is helpful in finding some A, eigenvalues of G with some special structure.

Theorem 2.1. Suppose G is a graph with V(G) = {v{,v,,...,v,} and B = {v{,v,,..., v} is the set of
vertices of G satisfying N(v;) = N(v;) for all i, j € {1,2,...,k}. Then the following hold.

(i) If B is an independent set of G, then ba is an A, eigenvalue of G with multiplicity at least k — 1,
where b is the degree of v;, fori=1,2,...,k.

(ii) If B is a clique of G, then a(w + B) — 1 is an A, eigenvalue of G having multiplicity at least k — 1,
whereas (B is the total number of vertices in V(G) \ B, that are edge connected to every vertex of

clique.
Proof. (i) Since {v, v,, ..., v} is the independent set of G sharing the same neighbourhood, so d(v;) =
d(vy) = -+ =d(v;) = b (say). We first index the independent vertices, so that the A, matrix of G can
be put as:
ba 0 ... O
0 ba ... 0 ka(n—k)
AG) =] + 1 el : (2.3)
0O 0 - ba
B Cntyx(n-t)
T
Let X;_; = ( -1, xp, x3,...,%%,0,0,0,..., 0) be the vector in R” such that
———
n—k
1, ifi=jand2 <i<k;
Xij = .
! 0, otherwise.
Clearly, X;, X5, ..., X;_; are the linearly independent vectors and we note that all the rows of Bk

are identical. Therefore, we have
T
A(,(G)Xlz(—ba ba 0 -+ 0 0 -- 0) = baX,.
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Thus, it follows that X; is the eigenvector that corresponds to the A, eigenvalue be. Similarly,

X5, X3,..., X, are the eigenvectors of the A, matrix corresponding to the eigenvalue ba.
(ii) By hypothesis, {vi,v,,...,v} forms the clique of G with the same neighbourhood, so
dvy) =d(vy) = -+ =d(v) = w— 1+, whereas S is the number of vertices in [N(v;) \ B|, which are

adjacent to every vertex of the clique. We first label the vertices of the clique, hence, the A, matrix of
G may be expressed as:

(w—-1+Pa l-«a l-«a
l-—a (U)—1+,B)Q’ l-—a ka(n—k)
Al(G) = : : - : . (2.4)
l-«a 1l-«a s (w=1+p)
BT C(n—k)x(n—k)
Let X, X5, ..., X;— be the linearly independent vectors defined as in (i). Then, we have
AdG)X = (~(w+Pa+1 (+Ba=1 0 -- 0 0 - o)T = (a(w + B) - DX;.

Likewise, X5, ..., X, are the eigenvectors of A,(G) that corresponds to the eigenvalue a(w + B) — 1.
This proves the result. O

Assume that a matrix M has a kind of symmetry and may be put in the form

XYY - YY
Y- 8 ¢ .- CC

L R B (2.5)
Yy ¢ ¢ - 8¢
Yy ¢c¢c - C 8

where X € R" | Y € R" and B,C € R"™, so that n = n| + nn,, where n is the number of copies
of 8. Then the spectrum of M can be found by the following result.

Lemma 2.2. [17] Assume that M is a matrix of the form presented in (2.5), having n > 1 copies of
the block matrix B and S pec(M) is the spectrum of M. Then S pec(M) = S pec(B—C)""' U S pec(M"),

X Y
whereas M’ = ( NG E]/?_ 1 C)mﬂ2 , and S pec(B — C)"™! represents the set of eigenvalues of
matrix B — C each with multiplicity n — 1.

All our groups are assumed to be finite with identity element represented by e. For notations and
definitions, we follow [22]. The presentation of the dihedral group D,,, n > 2, is provided as:

Dy, ={a,b: a" = e = b* aba = b).

Clearly, the last condition is equivalent to ab = ba™' = ba"'. Similarly, the presentation of the
semidihedral group S Ds, of order 8n and the dicyclic group O, having order 4n are given by:

SDSn = <a,b : a4n =—e = bz’ab — baZn—l>’
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and
Qs =(a,b := bra®" = e,a" = bz, ba' = ab).

The center of G, symbolized by Z(G), is specified by:
Z(G)=1{z€ G:za=azforeacha € G).

Any finite cyclic group G of order n can be written as the group Z, of integers modulo n. Clearly,
the commuting graph G = C(Z,,Z,) is the complete graph K,,, as every element of Z, commutes with
every other element. The A, spectrum of C(Z,, Z,) is {(an — 1)"""1 n — 1}, where [n — 1] represents the
algebraic multiplicity of eigenvalue. It easily follows that Z(D,,) = {e,a?}, for even n and Z(D,,) = {e},
for odd n. Also,the center of the dicyclic group is Z(Q4,) = {e,a"}. For the commuting graph [4]
G = C(Ds,,Z(D3,)), G is Ky, for odd n and G is K;, for even n. So, the commuting graphs C(G, Z(G))
have simple structures and it will be interesting to investigate the commuting graphs with the non trivial
structures.
The next result can be found in [4], which gives the structure of D,,, where X is D, itself.

Lemma 2.3. The commuting graph of the dihedral group D,, is

KV (K,.1UK,), ifnisodd;

6(0) n’D n) =
(Dzn: Dan) {Kz V(K2 U 5Ky), ifniseven.

In the following result, we find the A, eigenvalues of the commuting graphs of the dihedral group.
Theorem 2.4. The following properties hold for the commuting graph C(D,, D>,) of Da,.

(i) If n is odd, then the A, spectrum of C(Da,, D,,) comprises the eigenvalues « and an — 1 having
multiplicities n — 1, n — 2, respectively, and the three zeros of polynomial (2.6).

(ii) If n is even, then the A, spectrum of C(Dy,, D,,) comprises the simple eigenvalue 2an — 1, the
eigenvalue 2a + 1 having multiplicity 5 — 1, the eigenvalues an — 1 and 4a — 1 having algebraic
multiplicities n — 3 and 3, respectively, and the three zeros of polynomial (2.7).

Proof. (i) By Lemma 2.3, the commuting graph of D,, for odd n is C(D,,, D»,) = K, V (K, UK,,). Let
{(Vi,Vay ooy Vi Uy Uy, U, . . ., U, } be the vertex set of C(D,,, Dy,), where v;’s are the pendent vertices, u
is the vertex of degree 2n — 1 and u;’s are the vertices of degree n — 1. As v;’s are independent vertices
sharing the vertex u, so by Theorem 2.1, we get the A, eigenvalue @ with algebraic multiplicity n — 1.
Also, u;’s are the vertices of clique sharing the vertex u and by (ii) of Theorem 2.1 with 8 = 1, we
obtain the A, eigenvalue a(n — 1 + 1) — 1 = an — 1 with algebraic multiplicity n — 2. In this way, we
get 2n—3 A, eigenvalues and the remaining three A, eigenvalues of C(D,,, D,,) can be found by using
eigenequation (2.1). Let X be the eigenvector of A,(C(D,,, D»,)) with x; = X(v;), fori =1,2,3,...,2n.
Then, it follows that every component of X that corresponds to every pendent vertex is equal to xi,
component of X that corresponds to the vertex u is x, and the components of X that corresponds to the
vertices u;’s is equal to x3. Therefore, from the eigenequation A, X = AX, we have

Ax; =ax; + (1 — a)x,,

A=(Q-ax+(l-a)x+ -+ -a)x;+a@n—-Dx,+ (1 —a)x3 +--- + (1 — a)xz,

n n—1
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A =(Q1-a)xn+an-Dx+(l-a)x+0-a)x;+- -+ (1 —a)xs,

n-2

and the coefficient matrix for the right side of the above equations is:

a 1-«a 0
nl—-a) a@n-1) (n-1D(1-a)].
0 l-—a a+n—2

The characteristic polynomial of the above matrix is given by:

X -x@+2an+n-2)+ x(—a2 +2an* +3a’n - 2an+ (1 - a)*(1 —n) - n)

(2.6)
- (a +a?n® + 2an* - n* + a*n - 6an + 2n).

(ii) If n is even, then by Lemma 2.3, the commuting graph of D,, is K; V (Kn_z U ng) Let
VI, V2, e ey Vi, Vs Uy UL L, Ui, Uy, U, oo WS, UL be the vertex labelling of C(D,,, D»,), where v;’s are
the vertices of K, », u and v are the degree 2n — 1 vertices and u;1, up, i = 1,2,..., 7 are the vertices
of the degree 3. Since v;’s form the clique and share the same neighbourhood {u, v}, so by (ii) of
Theorem 2.1, a(n — 2 +2) — 1 = an — 1 is the A, eigenvalue of C(D,,, D,,) having multiplicity n — 3.
Also, {u, v} are the vertices of K> with =n—-2+2x 5 =2(n— 1) and by Theorem 2.1, is shown here
that 2an — 1 is the simple A, eigenvalue of C(D,,, D,,). Similarly, we see that 4a — 1 is the A,
eigenvalue of C(D,,, D»,) having multiplicity 5. The remaining 5 + 2 A, eigenvalues of C(Dy,, D>,)
can be obtained by using Equation (2.1). If X is the eigenvector of A,(C(Dy,, D3,)), then it is evident
that every component of X that corresponds to v;’s is equal to x;, the components of X that
corresponds to u and v is x, and the components of X that corresponds to u;; as well as u;, is equal to
x;+2,fori=1,2,..., g Thus from eigenequation (2.1), we have:

Ax; =a(n—Dx; + (n=3)1 —a)x; + (2 —2a)x,,
A =1-a)n-2)x +(@2n-2)+ Dxa + 2(1 —@)x3 + 2(1 —@)xg + - -+ + 2(1 — @)x242,
Axz =2(1 — a)x, + 3axs + (1 — a)xs,

Axy =2(1 — @)xy + 3axs + (1 — @)xy,

Axz42 =2(1 —a)x, + 3ax%+2 +(1- a)x%ﬂ,

and the coefficient matrix of the right ride of the above system of equations is

2+n-73 2(1 —a) 0 0 0
mn-2)(1-a) an-2)+1|2(1-a) 2(l-a) ... 2(1 -
0 2(1 — @) 2a + 1 0 0
0 2(1 — @) 0 2a+1 ... 0
6 2(1 —a’) 0 0 2a '+ 1 (ﬂ+2)x(ﬂ+2)
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Now, applying Lemma 2.2 to the above matrix with

_ 2(},’+n—3 2(1—&/) 3 O ~ B
X_((”_Z)(l—oz) a/(2n—2)+1)’Y_(z_za),g—(2a+l),0—(0)

and note that 7 = 5, we get the A, eigenvalue 2« + 1 with algebraic multiplicity 5 — 1. The other three
A, eigenvalues of C(D,,, D»,) are the eigenvalues of the following matrix:

2 +n -3 2(1 — @) 0
[(nZ)(l —a) a2n-2)+1 2(1 —a) \/g],
0 2(1—0)\@ 2a+ 1

and its characteristic polynomial is

X - xX*Qa+2en+n-1)+ x(—40z +2an* + 4a*n + dan - 2n — 1)
2.7

—2a - 2a*n* — 6an* + 2n* — 8a’n + 22an — 5n — 1.

The next lemma gives the structure of the commuting graph of the semidihedral group S Ds,,.

Lemma 2.5. [32] The structure of the commuting graph of S Dy, is given as:

K4 \Y (K4n_4 U I’LK4), lfl’l is Odd,'

C(SDSmDE%n) = . ;
K> V (K42 U2nK,), ifnis even.

In the subsequent result, we find the A, eigenvalues of the commuting graph of the semidihedral
group.
Theorem 2.6. For the commuting graph C(S Ds,,S Dg,) of the semidihedral group S Dsg,, the

subsequent properties hold.

(i) If nis odd, then the A, spectrum of C(S Dg,, S Dg,) comprises the eigenvalues 4an — 1, 8an — 1,
8a — 1, 4a + 3 with algebraic multiplicities 4n — 5, 3, 3n, n — 1, respectively, and the eigenvalues
of the following matrix:

4a+4n -5 41 - a) 0
An-4(1-a) 8an—a+3 4+n(l-a)l.
0 4+/n(1 - a) da+3

(ii) If n is even, then the A, spectrum of C(S Dg,, S Dg,) comprises the simple eigenvalue 8an — 1, the
eigenvalues 4an— 1, 4a — 1, 2a + 1 having algebraic multiplicities 4n—3, 2n, 2n— 1, respectively,
and the three eigenvalues of the sequel matrix:

2a0+4n -3 21 - @) 0
4n-2)1-a) 8an—-2a+1 2V2n(l-a)].
0 2V2n(1 - @) 2a + 1
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Proof. By using Theorem 2.1, Lemmas 2.2 and 2.5 and proceeding as in (ii) of Theorem 2.4, this result
can be proved. O
In the next result, we will determine the A, eigenvalues of the commuting graph of the dicyclic

group Qyy,.

Theorem 2.7. The A, spectrum of C(Quy, Quy) consists of the simple eigenvalue 4an — 1, and the
eigenvalues 2an — 1, 4a — 1, 2a + 1 with algebraic multiplicities 2n — 3, n, n — 1, respectively, and the
rest three eigenvalues are the zeros of polynomial (2.8).

Proof. The commuting graph C(Qun, Q4n) [5] of Quy is C(Qun, Qsn) = Ko V (K U nK;). Let

VisVay e vy Vonoo, Vo Uy Uny, Upn, Upl, U, - -« 5 Unt, Uy DE the vertex indexing of C(Q4y, Q4,), Where v;’s are
the vertices of the degree 2n — 1, v and u are the vertices of the degree 4n — 1 and u;;, u;; are the
vertices of degree 3, fori = 1,2,...,n. Since v;’s form the clique and share the same neighbourhood

{u,v}, so by Theorem 2.1, we have 2na — 1 is the A, eigenvalue of C(Q4,, Q4,) With algebraic
multiplicity 2n — 3. Likewise, u# and v form the clique K, and share the same neighbourhood with
B =2n—-2+2n = 4n — 2 and again using Theorem 2.1, we obtain the simple A, eigenvalue 4an — 1.
Similarly, for i = 1,2,...,n considering the vertices u;; and u;; with their neighbourhood {u, v}, we
obtain the A, eigenvalue 4a — 1 of C(Q4y, Q4,) With algebraic multiplicity n. The other n + 2, A,
eigenvalues of C(Qu,, Q4,) can be found by using Eq (2.1). If X is the eigenvector of A,(C(Qu4, Q4n)),
then it is clear that every component of X corresponding to v;’s is equal to x;, the components of X
corresponding to u and v is x, and the components of X corresponding to u;; and u;, is equal to x; + 2,
fori=1,2,...,n. Therefore, by eigenequation (2.1), we have

Ax; =a(n—Dx; + 2n=3)(1 —a)x; + 2(1 — a)x,,

Ay =2n-2) 1 —-a)x;+(@(dn—-2)+ Dx, +2(1 —a)x3 + 2(1 —a@)xs + - - - + 2(1 — @)x,49,
Ax; =2(1 —a)x; + Qa + 1)x3,

Axy =2(1 —a)x + Qa + 1)xy,

Axpio =2(1 — @)x; + Ca + Dxpyo,

and the coefficient matrix of the right side of the above system of equations is

2 +2n -3 2(1 — @) 0 0 0
Cn-2)1-a) a@dn-2)+1|2(01-a) 20 -a) ... 2(1-a)

0 2(1 —a) 2+ 1 0 0

0 2(1 - ) 0 20+1 ... 0

6 2(1 — ) 0 0 . 2a .+ 1 (n+2)><(n+2)

Now, applying Lemma 2.2 to the above matrix with

¥ 20+ 2n -3 2(1 — @) ),Y:( 0

= 2n-2)(1-a) a@n-2)+1 2_20),B=(2&+1),C:(0)
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and note that n = n, we obtain the A, eigenvalue 2a + 1 with algebraic multiplicity n — 1. The other
three A, eigenvalues of C(Q4,, Q4,) are the eigenvalues of the subsequent matrix:

2a+2n -3 2(1 - @) 0
Cn-2)1-a) adn-2)+1 2(1-a)ya|,
0 21-a)yn  2a+1

and its characteristic polynomial is given as:

¥ = x*Qa+4dan+2n-1)+ x(—4a + 8an* + 8a’n + 8an — 4n — 1)

(2.8)
—2a — 8a*n? — 24an® + 8n* — 16a*n + 44an — 10n — 1.

O

As A, matrix merges the spectral theories of the adjacency matrix, the Laplacian matrix, and the

signless Laplacian matrix. Thus for @ = 0, we find the adjacency spectrum of the commuting graphs of

D»,, S Dg, and Qy, as already obtained by [5, 13], by using different techniques. Similarly, for @ = %,

we have A%(G) = %Q(G), so we get the signless Laplacian spectrum of S Dg,, previously obtained
in [32], but there is an error in the eigenvalues and with their multiplicities. Also, using the fact that
A, (G) = Ay, (G) = () — ap)L(G), we can find the Laplacian spectrum of the commuting graphs of
Ds,, S Dg, and Qy,,.

Theorem 2.8. Suppose C(G) is a commuting graph of a finite group G and o(G) be its Laplacian
spectrum. Then the following hold.

(i) The Laplacian spectrum of C(D,,, D»,) is

_ 1o, 11, pln=21 2p}, if nis odd,
{0,2051 4151 pln=21 2521 if n is even.

(ii) The Laplacian spectrum of C(S Dg,, Dg,) is

_ 1o, 4lnl 8B (4p)ln=31 (8n) 4}, ifnis odd,
{0,201 4271 (4p)4=31 (8n)21),  if n is even.

(iii) The Laplacian spectrum of C(Qun, Qup) is
o = {0,241 2n)2r=3 (4n)).

A matrix M € M,(F) over the field F is called the integral if its spectrum consists of only integers.
Similarly, the Laplacian matrix L(G) of G is integral if all the eigenvalues of L(G) are integers. Next,
we have the immediate consequence of Theorem 2.8 about the Laplacian integral graphs.

Theorem 2.9. The commuting graphs of the dihedral group, the semidihedral group and the dicyclic
group are Laplacian integral graphs.
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3. Bounds for the A, spectral radius of commuting graphs of non-abelian groups

If a matrix has the special type of symmetry, so that its block representation can be written as:

Mg Mip - My
3 My Moy oo My
Mag Maz -+ Mg X
the rows and the columns of M are partitioned according to a partition P = {S5;,S,,...,S;} of the

set S = {1,2,...,d}. The quotient matrix Q (see [14]) of M is a d X d matrix whose entries are the
average column (row) sums of the blocks M, ; of M. The partition ¥ is known as regular (equitable)
if every block M, ; of M has the constant column (row) sum and in such case Q is called the regular
quotient matrix. Generally, the eigenvalues of Q interlace the eigenvalues of M. However, for the
regular partition # of S, any eigenvalue of the matrix Q is the eigenvalue of the matrix M.

Next, we state a result which is crucial in establishing bounds for the A, spectral radius.

Theorem 3.1. [19] Assume that M, and M, are the Hermitian matrices of order n such that M5 =
M, + My and 11(M;) > 1,(M;) > --- > ,(M;), i = 1,2,3 be their eigenvalues. Then

A(M3) < 4;(My) + 4 j (M), n2k>j>1,
A(M3) = ;(My) + A jin(Ma), n2> j>k =1,

where A; is the i-th largest eigenvalue. Both the inequalities are equalities [31] iff there exists a unit
vector which is the eigenvector to every of the three eigenvalues involved.

The following result is a consequence of Theorem 3.1 and this can be found in [14].

Corollary 3.2. [14] Let M € M* be such that M = (A ¢

cT B) , and A,(M) and A,(M) be the smallest

and the largest eigenvalues of M, respectively. Then
AL (M) + 4,(M) < 41(A) + 4,(B).

Now, we give the bounds for the A, eigenvalues of commuting graphs of non-abelian groups.

Theorem 3.3. Let A} be the A, spectral radius of C(Dyy, D»,). Then

1 < % (20’” +n -2+ Vn2 + 4na — 4na? — dan® + 4n2a/2) + Vn(l —a@), ifnisodd,
b % (Za/n +n -2+ Vn? + 8na — 8na? — 4an? + 4nzaz) + V2n(l — @), ifnis even.

Proof. For odd n, let {u,vi,vs,...,V,_1,uUi,Us,...,u,} be the vertices of C(D,,, D,,), where u is the
vertex of degree 2n — 1, v;’s are the vertices of degree n — 1 and u;’s are pendent vertices. Under this
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labelling, the A, matrix of C(D»,, D,,) is Ao(C(Dy,, D2,)) = A + B, where block representation of A is

an-1)| 1-a ... l—-a |0 ... O
1l-«a an—1) ... l-a |0 ... O

A= 1l-«a l-a ... ar-1)(0 ... 0],
0 0 0 a ... 0
0 0 0 0 ... «a

and its regular quotient matrix is

an—-1) 1-a)@n-1) 0
Q:{ l-a n—-2+a O].
0 0 a

The eigenvalues of Q are {«, 3 (2a/n +n—2+ V—4a’n + 4an + 4a’n? — 4an? + n2) }.
Also, the matrix B is
0 01><(n—1) (I = a)Jixn
B = [ 00— 1yx1 0, 0¢:-1)xn ],

(1 - a’)-]nxl 0n><(n—1) On
where J is the matrix of all ones. The regular quotient matrix of B is

0 0 n(l-a
0O O 0 ,
Il-a O 0
and its eigenvalues are {0, + vn(1 — @)}. Therefore, by Theorem 3.1, the inequality
A (C(Da, D) < A(A) + A(B),
implies that

1
A1 (C(Day, Dap)) < 3 (Zan +1n -2+ Vn? — 4na? + dna + 4n2a? — 4n2a/) + Vn(l — ).

For even n, with vertex labelling as in Theorem 2.4, the A, matrix of C(D»,, D,,) can be put as
AIY(C(DZI’H D2n)) =A+ Ba Where

an—-1) ... 1-«a -« l-«a 0 0 0 0
l-a ... | R l-a l-a 0 0 0 0
l-a ... a(n-1) -« -« 0 0o |... 0 0
l-a ... l-a |a@n-1) l -« l-a 1l-a|...|l-a 1-a
A= l—-a ... l1-—a l-a aln-1|l-a l-a|...|l-a 1-a |,
0 0 -« -« 3¢ 1-a... 0 0
0 0 l-a l1-a l-a 3a |... 0 0
0 0 -« -« 0 0 oo | 3 1-«a
0 0 l-a l-a 0 0 .| 1—a 3a
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and the regular quotient matrix of A is

n-3+2a 21 - a) 0 0 0
n-2)1-a) a@n-2)+1 0 0 0
0 0 2a+1 0 0
0= 0 0 0 2a+1 0
0 0 0 0 ... 2a+1

n+2

n—-3+2a 2(1 —a)
n-2)1-a) a@n-2)+1
we get the eigenvalue 2@ + 1 with algebraic multiplicity n — 1 and the other three eigenvalues of Q are
the eigenvalues of the sequel matrix:

n-3+2a 2(1 —a) 0
M':((n—Z)(l—a) an—-2)+1 0 ]

0 0 2+ 1

Now, by Lemma 2.2, with X = ( ), Y =(0), B= QRa+1)and C = (0),

The eigenvalues of M’ are {2a + 1, 3 (2a/n +n—2+ Vn? + 8na — 4n’a - 8na’ + 4n2a/2) }.

Similarly,
0n—2 0(11—2)><2 0(n—2)><n
B = [Ozx(nz) 022 (1- G)sz] >
0,xn2) (1 —a@)Joxn |
0 0 0
and its quotient matrix is [O 0 n(l — a/)], whose eigenvalues are {0, \/ﬂ(l — «)}. Therefore,

0 2(1-a) 0
by Theorem 3.1, we obtain

1
A{(C(Day, Dap)) < 3 (2an +n-2+ V2 + 8na — 4n2a — 8na? + 4n2a/2) + V2n(1 - a).

]
Likewise to Theorem 3.3, we have the subsequent results for the commuting graphs of S Dg, and

Q4n-
Theorem 3.4. Let AT be the A, spectral radius of the commuting graph C(S Dy, S Ds,,). Then

< dan +2n — 1 +2Vn? + dna — 4na? — 4an? + 4n2a? + 4\n(l — ),  ifnis odd;
" |dan +2n—1+2Vn? + 2na — 2na? — 4an® + 4n2a? + 2V2n(1 — @), ifn is even.

Theorem 3.5. Let A{ be the A, spectral radius of C(Qan, Qun). Then

12 <2an+n—1+ Vn? + 4na — 4na? — dan? + 4n2a? + 2\n(l - a).

Finally, we obtain the upper bounds for the A, spectral radius and the least A, eigenvalue of
commuting graphs of non-abelian groups.
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Theorem 3.6. Let A7 and A be the A, spectral radius and the smallest A, eigenvalue of the commuting
graph C(Dy,, D,,). Then

n+a+an-2+ \/afz(nz—n+l)+n(1—2a), if nis odd,

A+ 4, < . 5 > o
an+2a+§(n+ \/n(—Sa/ +8a+4ozn—4cm+n)), if nis even.

Proof. Labelling the vertices as in Theorem 2.4, the A, matrix of C(D,,, D,,) for odd n can be written
25 A,(C(Dyy, D) = (A"“ C““”X("‘”) . where

cT B,
@ 0 ... 0 l-a an-1) l-a ... l-a
0 a ... 0 l-«a
l-a an-1) ... l-«a
A= : : I : ,B=
0 0 1% l-a )
1- 1- -1
l—-a 1-a ... ala@n-1) @ ¢ a(n=1)
and
0 0 0
0 0 0
c=| . ) .
l-a 1—-a -+ 1-«a

By applying Lemma 2.2 to the matrix B, with X = (0),Y = (0),8 = a(n — 1), and C = (1 — a).
Consequently, an — 1 and n + a — 2 are its only distinct eigenvalues. Also, the regular quotient matrix
of A is

a l-«a
n(l-a) a@n-1))°

and its eigenvalues are an + \/ozz(n2 —n+ 1) + n(1 — 2a). Therefore, by Corollary 3.2, we have

A{+ 4, <n+a+an—-2+ \/a/z(nz—n+1)+n(1—2a).

For even n, indexing the vertices as in Theorem 2.4, the A, matrix of C(D,,, D,,) can be written as

Aa(C(DZruDZn)) = (é?‘ gn),where
amn-1) 1-a ... -« l-a -«
l—-a arn-1) ... l1-«a 1l-a 1-a
A: . . . . . ,
1-«a l-a ... an-1) l-«a l-«a
1 -« l-a ... l—-a |an-1) 1-a
1-«a l-a ... l-«a -« aln-1)
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3¢ 1l—-a| O 0 0 0
l-a 3a 0 0 0 0 0 0 0
0 0 3¢ 1-a 0 0 0 o ... 0
B = 0 0 |[1-a 3a 0 0 ,C=| : : :
: : : : . : : l-a 1l-a ... 1-«a
0 0 0 0 oo | 3 1-a l-a 1-a ... 1-«
0 0 0 0 ol l-a 3a

n—-3+2«x 2(1 — @)
mn-2)1-a) an-2)+1
% (2a/n +n -2+ \n(—8a% + 8a + 4a’n — 4an + n)) . Similarly, the regular quotient of B is

Now, the quotient matrix of A is and its eigenvalues are

20 + 1 0 0

0 20+1 ... 0

Q: . . . .
0 0 e 2a+ 1),
2

and we have 2a + 1 is the eigenvalue of Q with multiplicity 5. Thus, by Corollary 3.2, we obtain

1
/1‘1’+/lg§20/+1+§(2cm+n—21 \/n(—8012+80/+4a/2n—40m+n)).

m]
Following the proof of Theorem 3.6, we have the similar results for the commuting graphs of the
semidihedral and the dicyclic groups.

Theorem 3.7. Let A and A, be the A, spectral radius and the smallest A, eigenvalue of the commuting
graph C(S Dg,, S Dg,,). Then

dan +2n + 4a + 2 + 2 Vn2 + dna — 4n*a — 4na? + 4n2a?, ifnis odd,

AT+ A, < S
dan + 2n + 2a + 2 Vn? + 2na — 4na — 2na? + 4n2a?, if n is even.

Theorem 3.8. Let A and A5 be the A, spectral radius and the smallest A, eigenvalue of the commuting
graph C(Qun, Q4n)- Then

A7+ A% < 2an +n+ 2 + Vn? + dna — 4n’a — 4na? + 4na?.

4. Conclusions

In this article, the adjacency eigenvalues, the Laplacian eigenvalues, the signless Laplacian
eigenvalues, and the generalized adjacency eigenvalues of graphs are given, including the bounds on
the smallest and largest eigenvalues. The A, matrix makes it very interesting to study the eigenvalues
of well-known matrices in a very natural setting. Spectral properties of the graph defined by algebraic
structures (groups, rings, modules, vector spaces, and others) have attracted many researchers, and
various interesting problems have been solved both in combinatorics and algebra; for some recent
developments, see [2, 5-10, 26-30, 32]. However, the A, spectrum of all commuting and
non-commuting graphs of groups remains open at large.
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