AIMS Mathematics | |
Reflexive edge strength of convex polytopes and corona product of cycle with path | |
article | |
Kooi-Kuan Yoong1  Roslan Hasni1  Gee-Choon Lau2  Muhammad Ahsan Asim3  Ali Ahmad3  | |
[1] Special Interest Group on Modelling and Data Analytics ,(SIGMDA), Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu;Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA ,(Segamat Campus);College of Computer Sciences and Information Technology, Jazan University | |
关键词: convex polytope; corona product; edge irregular reflexive labeling; plane graph; reflexive edge strength; | |
DOI : 10.3934/math.2022657 | |
学科分类:地球科学(综合) | |
来源: AIMS Press | |
【 摘 要 】
For a graph $ G $, we define a total $ k $-labeling $ \varphi $ is a combination of an edge labeling $ \varphi_e(x)\to\{1, 2, \ldots, k_e\} $ and a vertex labeling $ \varphi_v(x) \to \{0, 2, \ldots, 2k_v\} $, such that $ \varphi(x) = \varphi_v(x) $ if $ x\in V(G) $ and $ \varphi(x) = \varphi_e(x) $ if $ x\in E(G) $, then $ k = \, \mbox{max}\, \{k_e, 2k_v\} $. The total $ k $-labeling $ \varphi $ is an edge irregular reflexive $ k $-labeling of $ G $ if every two different edges $ xy $ and $ x^\prime y^\prime $, the edge weights are distinct. The smallest value $ k $ for which such labeling exists is called a reflexive edge strength of $ G $. In this paper, we focus on the edge irregular reflexive labeling of antiprism, convex polytopes $ \mathcal D_{n} $, $ \mathcal R_{n} $, and corona product of cycle with path. This study also leads to interesting open problems for further extension of the work.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202302200001885ZK.pdf | 1924KB | download |