期刊论文详细信息
Opuscula Mathematica
On existence and global attractivity of periodic solutions of nonlinear delay differential equations
article
Chuanxi Qian1  Justin Smith1 
[1] Mississippi State University, Department of Mathematics and Statistics
关键词: delay differential equation;    periodic solution;    global attractivity.;   
DOI  :  10.7494/OpMath.2019.39.6.839
学科分类:环境科学(综合)
来源: AGH University of Science and Technology Press
PDF
【 摘 要 】

Consider the delay differential equation with a forcing term \[\tag{\(\ast\)} x'(t)=-f(t,x(t))+g(t,x(t-\tau ))+r(t), \quad t \geq 0\] where \(f(t,x): [0,\infty) \times [0,\infty) \to \mathbb{R}\), \(g(t,x): [0,\infty) \times [0,\infty) \to [0,\infty)\) are continuous functions and \(\omega\)-periodic in \(t\), \(r(t): [0,\infty) \to\mathbb{R}\) is a continuous function and \(\tau \in (0,\infty)\) is a positive constant. We first obtain a sufficient condition for the existence of a unique nonnegative periodic solution \(\tilde{x}(t)\) of the associated unforced differential equation of Eq. (\(\ast\)) \[\tag{\(\ast\ast\)} x'(t)=-f(t,x(t))+g(t,x(t-\tau)), \quad t \geq 0.\] Then we obtain a sufficient condition so that every nonnegative solution of the forced equation (\(\ast\)) converges to this nonnegative periodic solution \(\tilde{x}(t)\) of the associated unforced equation(\(\ast\ast\)). Applications from mathematical biology and numerical examples are also given.

【 授权许可】

CC BY-NC   

【 预 览 】
附件列表
Files Size Format View
RO202302200001590ZK.pdf 532KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次