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ON EXISTENCE AND GLOBAL ATTRACTIVITY
OF PERIODIC SOLUTIONS

OF NONLINEAR DELAY DIFFERENTIAL EQUATIONS
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Abstract. Consider the delay differential equation with a forcing term

x′(t) = −f(t, x(t)) + g(t, x(t− τ)) + r(t), t ≥ 0 (∗)

where f(t, x) : [0,∞)× [0,∞)→ R, g(t, x) : [0,∞)× [0,∞)→ [0,∞) are continuous func-
tions and ω-periodic in t, r(t) : [0,∞)→ R is a continuous function and τ ∈ (0,∞) is a positive
constant. We first obtain a sufficient condition for the existence of a unique nonnegative
periodic solution x̃(t) of the associated unforced differential equation of Eq. (∗)

x′(t) = −f(t, x(t)) + g(t, x(t− τ)), t ≥ 0. (∗∗)

Then we obtain a sufficient condition so that every nonnegative solution of the forced equation
(∗) converges to this nonnegative periodic solution x̃(t) of the associated unforced equation (∗∗).
Applications from mathematical biology and numerical examples are also given.
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1. INTRODUCTION

In applications, there are often external factors – either known or unknown – which
affect the mathematical models. One such external factor that has been studied in
related models is harvesting in a delayed recruitment model, see [3, 5, 7, 15], as well as
a Holling’s recruitment-delayed model with linear predator response

x′(t) = −α(t)x(t) + g(t, x(t− τ)) + β(t),

where β(t) 6≡ 0, discussed in [18] and references therein.
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Motivated by above observation and theoretical interest, our aim in this paper is
to study the global attractivity of nonnegative solutions of the following more general
nonlinear differential equation with a forcing term

x′(t) = −f(t, x(t)) + g(t, x(t− τ)) + r(t), t ≥ 0, (1.1)

where f(t, x) : [0,∞)× [0,∞)→ R and g(t, x) : [0,∞)× [0,∞)→ [0,∞) are contin-
uous functions and ω-periodic in t, r(t) : [0,∞)→ R is a continuous function and
τ ∈ (0,∞) is a positive constant.

As usual (see [10] for instance), with Eq. (1.1) an initial condition of the form

x(t) = φ(t),where φ ∈ C[[−τ, 0], [0,∞)] (1.2)

is associated. By a solution x(t) of Eq. (1.1), we mean x satisfies Eq. (1.1) with
condition (1.2).

When r(t) ≡ 0, Eq. (1.1) becomes the following unforced equation

x′(t) = −f(t, x(t)) + g(t, x(t− τ)), t ≥ 0. (1.3)

In particular, when f(t, x) = a(t)x where a(t) : (−∞,∞)→ R is a continuous and
ω-periodic function, Eqs. (1.1) and (1.3) reduce to

x′(t) = −a(t)x(t) + g(t, x(t− τ)) + r(t), t ≥ 0 (1.4)

and
x′(t) = −a(t)x(t) + g(t, x(t− τ)), t ≥ 0 (1.5)

respectively.
The existence of periodic solutions of Eq. (1.5) and some related forms has been

studied by numerous authors, see for example, [2–4,8,9,14,17] and the references cited
therein. In these works, different techniques and approaches were used to establish
the existence of periodic solutions. In particular, the positivity of Green’s function
of the periodic problem for linear first order functional differential equations (delay
differential equations being a particular case) was studied first in [9], and then the
ideals were developed in [2, 8]. In the next section of this paper, we will establish
a sufficient condition for the existence of a periodic solution of the more general
equation (1.3). By a periodic solution x̃(t) of Eq. (1.3), we mean x̃(t) is defined and
periodic for t ≥ −τ , and satisfies Eq. (1.3) for t ≥ 0.

While the global convergence of forced delay differential equations has been studied
by some authors, such as [11] and the references cited therein, to the best of the
authors’ knowledge the results on the global attractivity of periodic solutions are
relatively scarce. In a corresponding sense, attractivity can be interpreted as a sort of
stability. Stability, which is of paramount importance in applications, has been studied
and different methods have been developed by many authors. For instance, stability,
based on nonoscillation of linear scalar functional differential equations of the first
order, is one of the main topics in [8], the results of which were developed then in the
book [1]. Recently, the global attractivity of periodic solutions of Eq. (1.5) was studied
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in [16] for a(t), g(t, x) > 0. In Section 3, we obtain a sufficient condition such that
every nonnegative solution of the forced equation (1.1) converges to a nonnegative
periodic solution of the associated unforced equation (1.3). When r(t) ≡ 0, Eq. (1.1)
reduces to Eq. (1.3), this result extends the result found in [16] to include nonnegative
g(t, x) and a(t) such that a(t) may be zero or negative for some t ∈ [0, ω].

In Section 4 we apply these results to a differential equation model from mathe-
matical biology, namely an extension of a blood cell production model discussed in
[13], to consider external forcing factors such as the medical replacement of blood cells
or administration of antibodies [12]. We also give examples to demonstrate the results
from Section 2 and Section 3.

2. EXISTENCE OF A NONNEGATIVE PERIODIC SOLUTION

In this section we provide a sufficient condition for the existence of nonegative periodic
solutions of Eq. (1.3). The result is found using Schauder Fixed Point Theorem, which
requires defining an operator T that satisfies certain conditions. The form of the
operator T below is motivated by the integrating factor for linear equations. Observe
that adding a(t)x(t) to both sides of Eq. (1.3) gives us

x′(t) + a(t)x(t) = −f(t, x(t)) + a(t)x(t) + g(t, x(t− τ)). (2.1)

Multiplying both sides of (2.1) by e
∫ t

0
a(u)du and integrating both sides from t to t+ ω

yields

e

∫ t+ω
0

a(u)du
x(t+ ω)− e

∫ t
0
a(u)du

x(t)

=
t+ω∫

t

e

∫ s
0
a(u)du [−f(s, x(s)) + a(s)x(s) + g(s, x(s− τ))] ds.

(2.2)

As a(t) is ω-periodic, (2.2) can be written as

x(t+ ω)− e−
∫ ω

0
a(u)du

x(t)

=
t+ω∫

t

e
−
∫ t+ω
s

a(u)du [−f(s, x(s)) + a(s)x(s) + g(s, x(s− τ))] ds.
(2.3)

If x(t) is a periodic solution with period ω, then x(t+ ω) = x(t) and (2.3) becomes

x(t)− e−
∫ ω

0
a(u)du

x(t)

=
t+ω∫

t

e
−
∫ t+ω
s

a(u)du [−f(s, x(s)) + a(s)x(s) + g(s, x(s− τ))] ds,
(2.4)
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and thus,

x(t) = 1

1− e−
∫ ω

0
a(u)du

t+ω∫

t

e
−
∫ t+ω
s

a(u)du [−f(s, x(s)) + g(s, x(s− τ))] ds.

With this motivation for an operator T , the following theorem provides a sufficient
condition for the existence of nonnegative periodic solutions of Eq. (1.3).

Theorem 2.1. Suppose there exists a continuous ω-periodic function a(t) such that
ω∫

0

a(t)dt > 0 (2.5)

and
f(t, x) ≥ a(t)x, x ≥ 0 (2.6)

and that −f(t, x) + a(t)x is nonincreasing in x. Suppose also that g(t, x) is nonin-
creasing in x and that there is a positive constant B such that

t+ω∫

t

e
−
∫ t+ω
s

a(u)du[−f(s,B) + a(s)B + g(s,B)]ds ≥ 0, t ∈ [0, ω] (2.7)

and
1

1− e−
∫ ω

0
a(s)ds

t+ω∫

t

e
−
∫ t+ω
s

a(u)du
g(s, 0)ds ≤ B, t ∈ [0, ω]. (2.8)

Then Eq. (1.3) has a nonnegative ω-periodic solution x̃(t).

Proof. Let x(t) be a continuous function defined for t ≥ −τ and let

X = {x : x satisfies x(t+ ω) = x(t)}.

Then X is a normed vector space with the usual linear operations and norm
‖x‖ = sup0≤t≤ω |x(t)|. Let Λ be a subset of X defined by

Λ = {x : x ∈ X with 0 ≤ x(t) ≤ B},

for some positive constant B > 0. It is easy to see that Λ is a compact and convex
subset of X. Now, define a mapping T on Λ as the following: for each x ∈ Λ,

Tx(t) =
{

1
1−â

∫ t+ω
t

e
−
∫ t+ω
s

a(u)du[−f(s, x(s)) + a(s)x(s) + g(s, x(s− τ))]ds, t ≥ 0,
Tx(t+ n0ω), −τ ≤ t < 0,

(2.9)
where â = e

−
∫ ω

0
a(s)ds and n0 is a positive integer such that n0ω ≥ τ . Clearly, T is

continuous since f , g and a are continuous. We now show that T : Λ→ Λ. By noting
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−f(t, x) + a(t)x and g(t, x) are nonincreasing in x, and (2.7) and (2.8) hold, it is easy
to see that

Tx(t) ≥ 1
1− â

t+ω∫

t

e
−
∫ t+ω
s

a(u)du[−f(s,B) + a(s)B + g(s,B)]ds ≥ 0,

and

Tx(t) ≤ 1
1− â

t+ω∫

t

e
−
∫ t+ω
s

a(u)du
g(s, 0)ds ≤ B.

Next, we note that

Tx(t+ ω) = 1
1− â

t+2ω∫

t+ω

e
−
∫ t+2ω

s
a(u)du[−f(s, x(s)) + a(s)x(s) + g(s, x(s− τ))]ds

= 1
1− â

t+ω∫

t

e
−
∫ t+ω
s

a(u+ω)du[− f(s+ ω, x(s+ ω))

+ a(s+ ω)x(s+ ω)
+ g(s+ ω, x(s+ ω − τ))]ds

= 1
1− â

t+ω∫

t

e
−
∫ t+ω
s

a(u)du[−f(s, x(s) + a(s)x(s) + g(s, x(s− τ))]ds = Tx(t).

Hence Tx(t) is ω-periodic and so Tx ∈ Λ. By the Schauder Fixed Point Theorem, T
has a fixed point x̃ ∈ Λ. We claim that x̃ is a solution of Eq. (1.3). By noting f , g and
x̃ are ω-periodic in t, and T x̃(t) = x̃(t), we see that

d

dt
T x̃(t) = 1

1− â
[
−f(t+ ω, x̃(t+ ω)) + a(t+ ω)x̃(t+ ω) + g(t+ ω, x̃(t+ ω − τ))

− e−
∫ t+ω
t

a(u)du[−f(t, x̃(t)) + a(t)x(t) + g(t, x̃(t− τ))]

− a(t+ ω)
t+ω∫

t

e
−
∫ t+ω
s

a(u)du[−f(s, x̃(s)) + a(s)x̃(s) + g(s, x̃(s− τ))]ds
]

= 1
1− â

[
(−f(t, x(t)) + a(t)x̃(t) + g(t, x̃(t− τ)))

(
1− e−

∫ t+ω
t

a(u)du)]

− a(t)x̃(t)
= −f(t, x̃(t)) + a(t)x̃(t) + g(t, x̃(t− τ))− a(t)x̃(t)
= −f(t, T x̃(t)) + g(t, T x̃(t− τ)).
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Hence, T x̃(t) satisfies Eq. (1.3). Thus, T x̃(t) = x̃(t) is a ω−periodic solution of
Eq. (1.3). The proof is complete.

3. GLOBAL ATTRACTIVITY OF PERIODIC SOLUTIONS

In this section we establish a sufficient condition for which every nonnegative solution
of Eq. (1.1) converges to a nonnegative periodic solution of the associated unforced
Eq. (1.3).

First we introduce a lemma that will be needed later in the proof of the main
result.

Lemma 3.1. Suppose a(t) is a continuous, ω-periodic function such that (2.1) holds.
Then for any fixed constant α ≥ 0, there exists a constant M > 0 such that

t∫

α

e
−
∫ t
s
a(u)du

ds ≤M, t ≥ α.

Proof. Let t = nω + t∗, where n ∈ N and t∗ is such that 0 ≤ t∗ < ω. Then it follows
that

t∫

α

e
−
∫ t
s
a(u)du

ds =
nω+t∗∫

α

e
−
∫ nω+t∗

s
a(u)du

ds

=
α+ω∫

α

e
−
∫ nω+t∗

s
a(u)du

ds+
α+2ω∫

α+ω

e
−
∫ nω+t∗

s
a(u)du

ds+ . . .

+
nω+t∗∫

α+n∗ω

e
−
∫ nω+t∗

s
a(u)du

ds,

where n∗ ∈ N, n∗ ≤ n is the largest positive integer such that

α+ n∗ω ≤ nω + t∗

and

0 ≤ nω + t∗ − (α+ n∗ω) ≤ ω.
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From the above equality we have
t∫

α

e
−
∫ t
s
a(u)du

ds =
ω∫

0

e
−
∫ nω+t∗

s+α
a(u)du

ds+ . . .+
ω∫

0

e
−
∫ nω+t∗

s+α+(n∗−1)ω
a(u)du

ds

+
nω+t∗−(α+n∗ω)∫

0

e
−
∫ nω+t∗

s+α+n∗ω
a(u)du

ds

≤
ω∫

0




n∗∑

j=0
e
−
∫ nω+t∗

s+α+(n∗−j)ω
a(u)du


 ds

≤


1− e−(n∗+1)

∫ ω
0
a(u)du

1− e−
∫ ω

0
a(u)du




ω∫

0

e
−
∫ nω+t∗

s+α+n∗ω
a(u)du

ds

≤ 1

1− e−
∫ ω

0
a(u)du

ω∫

0

e
−
∫ nω+t∗

s+α+n∗ω
a(u)du

ds

= 1

1− e−
∫ ω

0
a(u)du

ω∫

0

e
−
∫ nω+t∗−(α+n∗ω)

s
a(u+α)du

ds

For the sake of notation, set γ = nω + t∗ − (α+ n∗ω). As 0 ≤ γ ≤ ω and
a(u+ α) = a(u+ β), where 0 ≤ β ≤ ω,

t∫

α

e
−
∫ t
s
a(u)du

ds ≤
(

1

1− e−
∫ ω

0
a(u)du

)
max

0≤γ≤ω
0≤β≤ω





ω∫

0

e
−
∫ γ
s
a(u+β)du

ds



 = M.

The proof of the lemma is complete.

Theorem 3.2. Assume that there exists a continuous ω-periodic function a(t) such
that (2.1) and (2.2) hold and −f(t, x) + a(t)x is nonincreasing in x. Suppose that g(t, x)
is nonincreasing in x and L-Lipschitz for each t ∈ [0, ω], i.e. there exists a continuous
function L(t) such that for any x1, x2 ≥ 0,

|g(t, x1)− g(t, x2)| ≤ L(t)|x1 − x2|, t ∈ [0, ω]. (3.1)

Suppose also that either

a(t) > 0 and
t+τ∫

t

L(s)e−
∫ t+τ
s

a(u)du
ds < 1, t ∈ [0, ω] (3.2)
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or
t+τ+ω∫

t

L(s)e−
∫ t+τ+ω

s
a(u)du

ds < 1, t ∈ [0, ω] (3.3)

and that
lim
t→∞

r(t) = 0. (3.4)

Then if Eq. (1.3) has a nonnegative ω-periodic solution x̃(t), then x̃(t) is the global
attractor of every nonnegative solution x(t) of Eq. (1.1), that is,

lim
t→∞

(x(t)− x̃(t)) = 0. (3.5)

Proof. Let x(t) be a nonnegative solution of Eq. (1.1) and let y(t) = x(t)− x̃(t). Then
y(t) satisfies the equation

y′(t) = −f(t, x̃(t)+y(t))+g(t, x̃(t−τ)+y(t−τ))+f(t, x̃(t))−g(t, x̃(t−τ))+r(t). (3.6)

First, assume that y(t) does not oscillate about zero. Then, y(t) is either eventually
positive or eventually negative. Assume y(t) is eventually positive. The proof for the
case that y(t) is eventually negative is similar and will be omitted. Hence there is
a number t0 ≥ 0 such that y(t) > 0 for t ≥ t0. As −f(t, x) + a(t)x is nonincreasing in
x, we have

−f(t, x̃(t) + y(t)) + a(t)(x̃(t) + y(t)) ≤ −f(t, x̃(t)) + a(t)x̃(t), t ≥ t0,

thus
−f(t, x̃(t) + y(t)) + f(t, x̃(t)) ≤ −a(t)y(t), t ≥ t0.

Then by noting that g is nonincreasing in x, from (3.6) and the above result we see
that y′(t) ≤ −a(t)y(t) + r(t), t ≥ t0 + τ and so it follows that

y(t) ≤ e−
∫ t
t0+τ

a(u)du
y(t0 + τ) +

t∫

t0+τ

e
−
∫ t
s
a(u)du|r(s)|ds, t ≥ t0 + τ.

By noting
∫ t
t0+τ a(u)du→∞ as t→∞, we see that

e
−
∫ t
t0+τ

a(u)du
y(t0 + τ)→ 0 as t→∞.

We now need to show

lim
t→∞

t∫

t0+τ

e
−
∫ t
s
a(u)du|r(s)|ds = 0. (3.7)

As (3.4) holds, there exists fixed constant M > 0 and T1 > 0 such that for each ε > 0,
t ≥ T1 implies that

|r(t)| < ε

2M .
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We see that

t∫

t0+τ

e
−
∫ t
s
a(u)du|r(s)|ds =

T1∫

t0+τ

e
−
∫ t
s
a(u)du|r(s)|ds+

t∫

T1

e
−
∫ t
s
a(u)du|r(s)|ds

≤ e−
∫ t

0
a(u)du

T1∫

t0+τ

e

∫ s
0
a(u)du|r(s)|ds+ ε

2M

t∫

T1

e
−
∫ t
s
a(u)du

ds.

∫ T1
t0+τ e

∫ s
0
a(u)du|r(s)|ds <∞ as a(t) and r(t) are continuous, and e

−
∫ t

0
a(u)du → 0

as t→∞ when (3.2) or (3.3) hold. Thus, e−
∫ t

0
a(u)du ∫ T1

t0+τ e

∫ s
0
a(u)du|r(s)|ds→ 0 as

t→∞. That is, there exists T2 > 0 such that for each ε > 0, t ≥ T2 implies that

T1∫

t0+τ

e
−
∫ t
s
a(u)du|r(s)|ds < ε

2 .

From Lemma 1, with α = T1, we see that
∫ t
T1
e
−
∫ t
s
a(u)du

ds ≤M as (2.1) holds.

Thus for t ≥ T1,
∫ t
T1
e
−
∫ t
s
a(u)du|r(s)|ds < ε

2 . Let T = max{T1, T2}. Then for t ≥ T ,
∫ t
t0+τ e

−
∫ t
s
a(u)du|r(s)|ds can be written instead as

t∫

t0+τ

e
−
∫ t
s
a(u)du|r(s)|ds

=
T∫

t0+τ

e
−
∫ t
s
a(u)du|r(s)|ds+

t∫

T

e
−
∫ t
s
a(u)du|r(s)|ds < ε

and (3.7) holds. Thus y(t)→ 0 as t→∞, and (3.5) holds.
Next, consider the case where y(t) oscillates about 0. Let {tn} and {sn} be sequences

of t such that 



y(t1) = 0,
y(t) ≥ 0 for t2k−1 ≤ t ≤ t2k,
y(t) ≤ 0 for t2k ≤ t ≤ t2k+1,

tk ≤ sk ≤ tk+1,

y(t) has relative extrema at sk,

k = 1, 2, . . .

To show (3.5) holds, it suffices to show that |y(sn)| → 0 as n→∞.
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We claim that for t1 ≤ t ≤ t2,

y(t) ≤
t∫

t1

e
−
∫ t
s
a(u)du|g(s, x̃(s− τ) + y(s− τ))− g(s, x̃(s− τ))|ds

+
t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds.

(3.8)

As y(t) ≥ 0 for t1 ≤ t ≤ t2,

−f(t, x̃(t) + y(t)) + a(t)(x̃(t) + y(t)) ≤ −f(t, x̃(t)) + a(t)x̃(t)

and so
f(t, x̃(t) + y(t)) + f(t, x̃(t)) ≤ −a(t)y(t).

Combining this result with (3.6) gives

y′(t) ≤ −a(t)y(t) + g(t, x̃(t− τ) + y(t− τ))− g(t, x̃(t− τ)) + r(t).

Multiplying the inequality by e
∫ t

0
a(s)ds gives

(
e

∫ t
0
a(s)ds

y(t)
)′

≤ e
∫ t

0
a(s)ds [g(t, x̃(t− τ) + y(t− τ))− g(t, x̃(t− τ))] + e

∫ t
0
a(s)ds

r(t).

Integrating from t1 to t yields

|y(t)| = y(t) ≤
t∫

t1

e
−
∫ t
s
a(u)du|g(s, x̃(s− τ) + y(s− τ))− g(s, x̃(s− τ))|ds

+
t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds

and (3.8) holds.
As g(t, x) is ω-periodic in t and (3.10) holds, we see that for x1, x2 ≥ 0,

|g(t, x1)− g(t, x2)| ≤ L(t)|x1 − x2|, (3.9)

where L(t) = L(t+ ω). It then follows from (3.8) that when t1 ≤ t ≤ t2,
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y(t) ≤
t∫

t1

e
−
∫ t
s
a(u)du|g(s, x̃(s− τ) + y(s− τ))− g(s, x̃(s− τ))|ds

+
t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds

≤
t∫

t1

e
−
∫ t
s
a(u)ds

L(s)|y(s− τ)|ds+
t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds.

(3.10)

Suppose (3.2) holds. By the periodic properties of a(t) and L(t), from (3.2) there
exists a positive constant c < 1 such that

t+τ∫

t

L(s)e−
∫ t+τ
s

a(u)du
ds ≤ c. (3.11)

We now claim for all t1 ≤ t ≤ t2,

y(t) ≤ c · max
t1−τ≤s≤t1

|y(s)|+
t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds. (3.12)

In particular, as t1 ≤ s1 ≤ t2,

y(s1) ≤ c · max
t1−τ≤s≤t1

|y(s)|+
s1∫

t1

e
−
∫ s1
s

a(u)du|r(s)|ds. (3.13)

To this end we consider two cases: t2 ≤ t1 + τ and t2 > t1 + τ . For t2 ≤ t1 + τ ,
t− τ ≤ t1 for all t1 ≤ t ≤ t2. From (3.10) we have

y(t) ≤
t∫

t1

L(s)e−
∫ t
s
a(u)du|y(s− τ)|ds+

t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds

≤
t∫

t−τ

L(s)e−
∫ t
s
a(u)du

ds · max
t1−τ≤s≤t1

|y(s)|+
t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds.

From (3.11) we see that (3.12) and (3.13) hold. Next consider the case t2 > t1 + τ .
In this case we must consider two different possibilities: t1 ≤ t ≤ t1 + τ and
t1 + τ < t ≤ t2. If t1 ≤ t ≤ t1 + τ , as we have shown in the previous case, (3.12)
holds. So we only need to consider t such that t1 + τ < t ≤ t2. As y(t) > 0 when
t1 + τ < t < t2, then as before we see that

−f(t, x̃(t) + y(t)) + f(t, x̃(t)) ≤ −a(t)y(t).
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As y(t− τ) ≥ 0 when t1 + τ < t ≤ t2, and g(·, x) is nonincreasing, we see that

g(t, x̃(t− τ) + y(t− τ))− g(t, x̃(t− τ)) ≤ 0.

By noting the above results, (3.6) yields

y′(t) = −f(t, x̃(t) + y(t)) + g(t, x̃(t− τ) + y(t− τ)) + f(t, x̃(t))− g(t, x̃(t− τ)) + r(t)
≤ −a(t)y(t) + r(t).

For t1 + τ < t ≤ t2, as y(t) ≥ 0, we have

y(t) ≤ e−
∫ t
t1+τ

a(u)du
y(t1 + τ) +

t∫

t1+τ

e
−
∫ t
s
a(u)du|r(s)|ds, t1 + τ < t ≤ t2.

As (3.12) holds for t = t1 + τ we have

y(t1 + τ) ≤ c · max
t1−τ≤s≤t1

|y(s)|+
t1+τ∫

t1

e
−
∫ t1+τ

s
a(u)du|r(s)|ds

Combining the two inequalities above yields

y(t) ≤ e−
∫ t
t1+τ

a(u)du
(
c · max

t1−τ≤s≤t1
|y(s)|+

t1+τ∫

t1

e
−
∫ t1+τ

s
a(u)du|r(s)|ds

)

+
t∫

t1+τ

e
−
∫ t
s
a(u)du|r(s)|ds

≤ e−
∫ t
t1+τ

a(u)du · c · max
t1−τ≤s≤t1

|y(s)|+
t1+τ∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds

+
t∫

t1+τ

e
−
∫ t
s
a(u)du|r(s)|ds

≤ c · max
t1−τ≤s≤t1

|y(s)|+
t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds, t1 + τ < t ≤ t2.

So (3.12) holds for t1 ≤ t ≤ t2, and thus (3.13) holds. Now consider t2 ≤ t ≤ t3.
By a similar argument that is omitted, we may show that for t2 ≤ t ≤ t3,

y(t) ≥ −c · max
t2−τ≤s≤t2

|y(s)| −
t∫

t2

e
−
∫ t
s
a(u)du|r(s)|ds, t2 ≤ t ≤ t3.
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In particular,

y(s2) ≥ −c · max
t2−τ≤s≤t2

|y(s)| −
s2∫

t2

e
−
∫ s2
s

a(u)du|r(s)|ds. (3.14)

Combining (3.13) and (3.14) gives

|y(sn)| ≤ c · max
tn−τ≤s≤tn

|y(s)|+
sn∫

tn

e
−
∫ sn
s

a(u)du|r(s)|ds, n = 1, 2.

Then by the Method of Steps we have

|y(sn)| ≤ c · max
tn−τ≤s≤tn

|y(s)|+
sn∫

tn

e
−
∫ sn
s

a(u)du|r(s)|ds, n = 1, 2, . . . (3.15)

Define subsequences {tnm} of {tn} and {snm} of {sn} such that




for all n ≥ n1, tn − τ ≥ 0,
for all n ≥ nm+1, tn − τ ≥ tnm ,
tnm ≤ snm ≤ tnm+1 , and
|y(snm)| ≥ |y(s)|, tnm ≤ s ≤ tnm+1 ,

m = 1, 2, . . . (3.16)

As (3.4) holds, sups≥tn{|r(s)|} → 0 as n→∞. From Lemma 3.1, with α = tn and
sn ≥ tn,

sn∫

tn

e
−
∫ sn
s

a(u)du
ds ≤M, n = 1, 2, . . .

So

lim
n→∞

sn∫

tn

e
−
∫ sn
s

a(u)du|r(s)|ds ≤ lim
n→∞


 sup
s≥tn
{|r(s)|}

sn∫

tn

e
−
∫ sn
s

a(u)du
ds


 = 0.

Then there exists positive constant δ such that c+ δ < 1 and
sn∫

tn

e
−
∫ sn
s

a(u)du|r(s)|ds < δm, n ≥ nm.

From the above result, together with (3.15) we have

|y(sn)| ≤ c · max
tn−τ≤s≤tn

|y(s)|+ δm, n ≥ nm. (3.17)
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Let B = max0≤s≤tn1
|y(s)|. We claim that

|y(sn)| ≤ (c+ δ)m (B + 1) , n ≥ nm. (3.18)

First we show that the result is true for m = 1. When n = n1, tn − τ ≥ 0 and

|y(sn1)| ≤ c · max
tn1−τ≤s≤tn1

|y(s)|+ δ

≤ c · max
0≤s≤tn1

|y(s)|+ δ

≤ cB + δ

≤ (c+ δ)(B + 1).

Next we assume
|y(sn)| ≤ (c+ δ)(B + 1), n1 ≤ n ≤ k

and show this result holds for k ≤ n ≤ k + 1. As tk ≤ sk ≤ tk+1, from the above
assumption we see that |y(s)| ≤ B + 1 for tn1 ≤ s ≤ tk+1. Since B = max0≤s≤tn1

|y(s)|
we have |y(s)| ≤ B + 1 for 0 ≤ s ≤ tk+1. From (3.17), for k ≤ n ≤ k + 1,

|y(sn)| ≤ c · max
tn−τ≤s≤tn

|y(s)|+ δ

≤ c · max
0≤s≤tk+1

|y(s)|+ δ

≤ c (B + 1) + δ

≤ (c+ δ)(B + 1).

Therefore, by induction, (3.18) holds when m = 1.
Next, assume that

|y(sn)| ≤ (c+ δ)k (B + 1) , n ≥ nk.

We are going to show that

|y(sn)| ≤ (c+ δ)k+1 (B + 1) , n ≥ nk+1.

From (3.16), (3.17), and the above assumption we see that

|y(sn)| ≤ c · max
tn−τ≤s≤tn

|y(s)|+ δk+1

≤ c · max
tnk≤s≤tn

|y(s)|+ δk+1

≤ c · (c+ δ)k (B + 1) + δk+1, n ≥ nk+1.

As
c · (c+ δ)k (B + 1) + δk+1 ≤ (c+ δ)k+1 (B + 1) ,

the above inequalities yield

|y(sn)| ≤ (c+ δ)k+1 (B + 1) , n ≥ nk+1.
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Thus, by induction, we see that (3.18) holds. This implies that y(sn)→ 0 as n→∞,
and thus (3.5) holds.

Next suppose first that (3.3) holds. By the periodic property of a(t) and L(t), there
exists a positive constant d < 1 such that

t+τ+ω∫

t

L(s)e−
∫ t+τ+ω

s
a(u)du

ds ≤ d. (3.19)

We claim that

|y(t)| ≤ d · max
t1−τ≤s≤t1+ω

|y(s)|+
t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds, t1 ≤ t ≤ t2. (3.20)

In particular, as t1 ≤ s1 ≤ t2 we will show that

|y(s1)| ≤ d · max
t1−τ≤s≤t1+ω

|y(s)|+
s1∫

t1

e
−
∫ s1
s

a(u)du|r(s)|ds. (3.21)

To this end, we consider two cases: t2 ≤ t1 + τ + ω and t2 > t1 + τ + ω. When
t2 ≤ t1 + τ + ω, then for any t1 ≤ t ≤ t2, we have t− τ − ω ≤ t1, and so (3.8) yields

|y(t)| = y(t) ≤
t∫

t1

e
−
∫ t
s
a(u)du|g(s, x̃(s− τ) + y(s− τ))− g(s, x̃(s− τ))|ds

+
t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds

≤
t∫

t1

L(s)e−
∫ t
s
a(u)du|y(s− τ)|ds+

t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds

≤
t∫

t−τ−ω

L(s)e−
∫ t
s
a(u)du

ds · max
t1−τ≤s≤t1+ω

|y(s)|+
t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds.

By noting (3.19) we see that (3.20), and thus (3.21), hold.
Next, consider t2 > t1 + τ + ω. When t1 < t ≤ t1 + τ + ω, as we have shown in the

previous case, (3.20) holds. So we need only to consider t such that t1 + τ + ω < t ≤ t2.
By a similar argument as used when (3.2) holds,

y′(t) ≤ −a(t)y(t) + r(t), t1 + τ < t ≤ t2. (3.22)

For t1 + τ < t ≤ t2, as y(t) ≥ 0, (3.22) gives

|y(t)| = y(t) ≤ e−
∫ t
t1+τ

a(s)ds
y(t1 + τ) +

t∫

t1+τ

e
−
∫ t
s
a(u)du|r(s)|ds, t1 + τ < t ≤ t2.
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For t = t1 + τ + ω, the inequality above yields

y(t1 + τ + ω) ≤ e−
∫ t1+τ+ω

t1+τ
a(s)ds

y(t1 + τ) +
t1+τ+ω∫

t1+τ

e
−
∫ t1+τ+ω

s
a(u)du|r(s)|ds.

From (3.20) we see that

y(t1 + τ) ≤ d · max
t1−τ≤s≤t1+ω

|y(s)|+
t1+τ∫

t1

e
−
∫ t1+τ

s
a(u)du|r(s)|ds,

and

e
−
∫ t1+τ+ω

t1+τ
a(s)ds

y(t1 + τ) ≤ e−
∫ t1+τ+ω

t1+τ
a(s)ds · d · max

t1−τ≤s≤t1+ω
|y(s)|

+
t1+τ∫

t1

e
−
∫ t1+τ+ω

s
a(u)du|r(s)|ds

≤ d · max
t1−τ≤s≤t1+ω

|y(s)|

+
t1+τ∫

t1

e
−
∫ t1+τ+ω

s
a(u)du|r(s)|ds.

Thus

y(t1 + τ + ω) ≤ d · max
t1−τ≤s≤t1+ω

|y(s)|+
t1+τ+ω∫

t1

e
−
∫ t1+τ+ω

s
a(u)du|r(s)|ds.

Similarly, for any positive k such that k < ω and t1 + τ + ω + k ≤ t2 we have

y(t1 + τ + ω + k) ≤ e−
∫ t1+τ+ω+k

t1+τ+k
a(s)ds

y(t1 + τ + k)+
t1+τ+ω+k∫

t1+τ+k

e
−
∫ t1+τ+ω+k

s
a(u)du|r(s)|ds

≤ d · max
t1−τ≤s≤t1+ω

|y(s)|+
t1+τ+ω+k∫

t1

e
−
∫ t1+τ+ω+k

s
a(u)du|r(s)|ds.

If k ≥ ω, we write k = k∗ + nω, where k∗ < ω, n = 1, 2, . . .. Then for k ≥ ω such that
t1 + τ + ω + k ≤ t2, y(t1 + τ + ω + k) = y(t1 + τ + (n+ 1)ω + k∗). From the above
inequalities we have
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y(t1 + τ + ω + k) ≤ e−
∫ t1+τ+(n+1)ω+k∗

t1+τ+nω+k∗ a(s)ds
y(t1 + τ + nω + k∗)

+
t1+τ+(n+1)ω+k∗∫

t1+τ+nω+k∗

e
−
∫ t1+τ+(n+1)ω+k∗

s
a(u)du|r(s)|ds

≤ e−
∫ t1+τ+(n+1)ω+k∗

t1+τ+(n−1)ω+k∗ a(s)ds
y(t1 + τ + (n− 1)ω + k∗)

+
t1+τ+(n+1)ω+k∗∫

t1+τ+(n−1)ω+k∗

e
−
∫ t1+τ+(n+1)ω+k∗

s
a(u)du|r(s)|ds

...

≤ e−
∫ t1+τ+(n+1)ω+k∗

t1+τ+k∗ a(s)ds
y(t1 + τ + k∗)

+
t1+τ+(n+1)ω+k∗∫

t1+τ+k∗

e
−
∫ t1+τ+(n+1)ω+k∗

s
a(u)du|r(s)|ds.

and thus
y(t1 + τ + ω + k) = y(t1 + τ + (n+ 1)ω + k∗)

≤ d · max
t1−τ≤s≤t1+ω

|y(s)|

+
t1+τ+(n+1)ω+k∗∫

t1

e
−
∫ t1+τ+(n+1)ω+k∗

s
a(u)du|r(s)|ds.

So then for all t1 + τ + ω < t ≤ t2, as t is of the form t1 + τ + (n+ 1)ω + k∗, we see
from the above inequalities that

y(t) ≤ d · max
t1−τ≤s≤t1+ω

|y(s)|+
t∫

t1

e
−
∫ t
s
a(u)du|r(s)|ds.

and (3.20) holds for t1 ≤ t ≤ t2. As t1 ≤ s1 ≤ t2, (3.21) holds as well. By an argument
similar to that found in the proof of the case where (3.2) holds, we can show that

|y(sn)| ≤ d · max
tn−τ≤s≤tn+ω

|y(s)|+
sn∫

tn

e
−
∫ sn
s

a(u)du|r(s)|ds, n = 1, 2, . . . (3.23)

We choose a positive constant η such that d+ η < 1. From Lemma 3.1, in light of
(3.16), (3.23) becomes

|y(sn)| ≤ d · max
tn−τ≤s≤tn+ω

|y(s)|+ ηm, n ≥ nm.
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Again by an argument similar to when (3.2) holds, we show that y(sn)→ 0 as n→∞.
Thus (3.5) holds and the proof is complete.

The following result is a direct consequence of combining Theorem 2.1 and Theo-
rem 3.2.

Theorem 3.3. Suppose there exists a continuous ω-periodic function a(t) such
that (2.1) and (2.2) hold and that −f(t, x) + a(t)x is nonincreasing in x. Sup-
pose also that there is a positive constant B > 0 such that (2.7) and (2.8) hold. Suppose
also that g(t, x) is nonincreasing in x and that there exists continuous function L(t)
such that (3.1) and either (3.2) or (3.3) holds. Then Eq. (1.3) has a unique nonnegative
ω-periodic solution x̃(t), where x̃(t) is a global attractor of all nonnegative solutions
of Eq. (1.3). Suppose also that r(t) satisfies (3.4). Then x̃(t) is a global attractor of
all nonnegative solutions x(t) of Eq. (1.1).

When g(t, x) = b(t)h(x), where b(t) : [0,∞)→ [0,∞) is a continuous ω-periodic
function and h(x) : [0,∞)→ [0,∞) is a continuous function, Eq. (1.1) and Eq. (1.3)
reduce to

x′(t) = −f(t, x(t)) + b(t)h(x(t− τ)) + r(t), t ≥ 0 (3.24)

and
x′(t) = −f(t, x(t)) + b(t)h(x(t− τ)), t ≥ 0 (3.25)

respectively. Clearly, g(t, x) is L-Lipschitz with L(t) = b(t). Hence, the following
conclusion is a direct consequence of Theorem 3.3.

Corollary 3.4. Suppose there exists a continuous ω-periodic function a(t) such
that (2.1) and (2.2) hold and that −f(t, x) + a(t)x is nonincreasing in x. Suppose also
that there is a positive constant B > 0 such that

t+ω∫

t

e
−
∫ t+ω
s

a(u)du [−f(s,B) + a(s)B + b(s)h(B)] ds ≥ 0, t ∈ [0, ω]

and
1

1− e−
∫ ω

0
a(s)ds

t+ω∫

t

e
−
∫ t+ω
s

a(u)
b(s)h(0)ds ≤ B, t ∈ [0, ω].

Suppose also that h(x) is nonincreasing in x and that either

a(t) > 0 and
t+τ∫

t

b(s)e−
∫ t+τ
s

a(u)du
ds < 1

or
t+τ+ω∫

t

b(s)e−
∫ t+τ+ω

s
a(u)du

ds < 1
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and that
lim
t→∞

r(t) = 0.

Then Eq. (3.25) has a unique nonnegative ω-periodic solution x̃(t), and x̃(t) is a global
attractor of all nonnegative solutions of Eq. (3.24) and Eq. (3.25).

When f(t, x) = a(t)x, Eq. (1.1) and Eq. (1.3) reduce to

x′(t) = −a(t)x(t) + g(t, x(t− τ)) + r(t) (3.26)

and
x′(t) = −a(t)x(t) + g(t, x(t− τ)), (3.27)

respectively. As (2.2) cleary holds and −f(t, x) + a(t)x = 0 is obviously nonincreasing,
(2.7) holds for any B > 0 and (2.8) holds for B large enough, the following is a direct
consequence of Theorem 3.3.

Corollary 3.5. Assume
∫ ω

0 a(t)dt > 0 and suppose that g(t, x) is nonincreasing in x
and that there exists a continuous function L(t) such that (3.1) and either (3.2) or
(3.3) holds. Suppose also that (3.4) holds. Then Eq. (3.27) has a unique nonnegative
ω-periodic solution x̃(t), and x̃(t) is a global attractor of all nonnegative solutions of
Eq. (3.26) and Eq. (3.27).

When f(t, x) = a(t)x and g(t, x) = b(t)h(x) as above, Eq. (1.1) and Eq. (1.3) reduce
to

x′(t) = −a(t)x(t) + b(t)h(x(t− τ)) + r(t) (3.28)

and
x′(t) = −a(t)x(t) + b(t)h(x(t− τ)), (3.29)

respectively. The following conclusion is a direct result of combining Corollary 3.4 and
Corollary 3.5, which will be useful in the next section.

Corollary 3.6. Assume
∫ ω

0 a(t)dt > 0 and suppose that h(x) is nonincreasing in x
and that

a(t) > 0 and
t+τ∫

t

b(s)e−
∫ t+τ
s

a(u)du
ds < 1

or
t+τ+ω∫

t

b(s)e−
∫ t+τ+ω

s
a(u)du

ds < 1

and that (3.4) holds. Then Eq. (3.29) has a unique nonnegative ω-periodic solution x̃(t),
and x̃(t) is a global attractor of all nonnegative solutions of Eq. (3.28) and Eq. (3.29).
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4. APPLICATIONS AND EXAMPLES

In this section, we apply results found in the last section to equations derived from
mathematical biology and give examples to demonstrate results found in the previous
section.

Consider the differential equation

x′(t) = −a(t)x(t) + b(t)
1 + xγ(t− τ) + r(t), t ≥ 0, (4.1)

where a(t) is a continuous ω-periodic function, b(t) is a nonnegative continuous
ω-periodic function, r(t) is a continuous function and τ is a positive constant. When
r(t) ≡ 0 Eq. (4.1) reduces to

x′(t) = −a(t)x(t) + b(t)
1 + xγ(t− τ) , t ≥ 0. (4.2)

When a(t) ≡ a, b(t) ≡ b are positive constants, (4.1) and (4.2) become

x′(t) = −ax(t) + b

1 + xγ(t− τ) + r(t), t ≥ 0 (4.3)

and
x′(t) = −ax(t) + b

1 + xγ(t− τ) , t ≥ 0, (4.4)

respectively. Eq. (4.4) is a model used to study blood cell production. When r(t) 6≡ 0,
the function r(t) may represent the medical replacement rate of blood cells or de-
struction rate of blood cells due to administration of antibodies as a function of t, see
[6, 12] and references cited therein. While the global attractivity of positive solutions
of Eq. (4.4) has been studied quite extensively, results are relatively scarce when
considering the model with periodic coefficients or the model with a nonzero forcing
term as previously described.

We see that Eq. (4.1) is in the form of Eq. (3.29) with h(x) = 1
1+xγ . By combining

results from [16] for Eq. (4.2) with Corollary 3.6 in the previous section we have
the following result.

Corollary 4.1. Suppose that

a(t) > 0, γ = 1, and
t+τ∫

t

b(s)e−
∫ t+τ
s

a(u)du
ds < 1, t ∈ [0, ω],

or

a(t) > 0, γ > 1, and (γ − 1)
γ−1
γ (γ + 1)

γ+1
γ

4γ

t+τ∫

t

b(s)e−
∫ t+τ
s

a(u)du
ds < 1, t ∈ [0, ω],
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or
ω∫

0

a(t)dt > 0, γ = 1, and
t+τ+ω∫

t

b(s)e−
∫ t+τ+ω

s
a(u)du

ds < 1, t ∈ [0, ω],

or
ω∫

0

a(t)dt > 0, γ > 1, and

(γ − 1)
γ−1
γ (γ + 1)

γ+1
γ

4γ

t+τ+ω∫

t

b(s)e−
∫ t+τ+ω

s
a(u)du

ds < 1, t ∈ [0, ω],

and that r(t) satisfies (3.4).Then Eq. (4.2) has a unique nonnegative ω-periodic solution
x̃(t) and every nonnegative solution x1(t) of Eq. (4.1) and x2(t) of Eq. (4.2) converges
to x̃(t).

The following are examples to further demonstrate the results of Theorem 3.3 and
its corollaries.

Example 4.2. Consider the differential equations

x′(t) = −(0.1 sin 12t+ 0.1)
(

10x2(t) + 9x(t) + 1
9x(t) + 7

)
+ 0.1 cos 4t

1 + x2(t− 1) + te−2t (4.5)

and

x′(t) = −(0.1 sin 12t+ 0.1)
(

10x2(t) + 9x(t) + 1
9x(t) + 7

)
+ 0.1 cos 4t

1 + x2(t− 1) . (4.6)

Eq. (4.5) takes the form of Eq. (3.24) with f(t, x) = (0.1 sin 12t+ 0.1)
(

10x2(t)+9x(t)+1
9x(t)+7

)
,

b(t) = 0.1 cos 4t+ 0.1, h(x) = 1
1+x2 , r(t) = te−2t, τ = 1 and ω = π

2 . When r(t) ≡ 0,
Eq. (4.5) reduces to Eq. (4.6) which takes the form of Eq. (3.25). For
a(t) = 0.1 sin 12t+ 0.1, we see that

∫ ω
0 a(t)dt > 0, while r(t) satisfies lim

t→∞
r(t) = 0.

As h′(x) = −2x
(1+x2)2 < 0, h(x) is nonincreasing in x for x ≥ 0. We numerically verify

that (2.7) and (2.8) hold for B = 1.2 and that

t+1+π
2∫

t

(0.1 cos 4s+ 0.1)e−
∫ t+1+π

2
s

(0.1 sin 12u+0.1)du
ds < 1, t ∈

[
0, π2

]
.

From Corollary 3.4, we see that Eq. (4.6) has a unique nonnegative π
2 -periodic solution

x̃(t), and every nonnegative solution of Eq. (4.5) and Eq. (4.6) converges to x̃(t).
The solution for a particular initial condition is shown in Figure 1.
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Fig. 1. Graph of solution x(t) of Eq. (4.5) with initial function φ(t) = 0.1t+ 0.75

Example 4.3. Consider the differential equations

x′(t) = −
(

0.15 sin
(
t

2

)
+ 0.10

)
x(t) +

0.1 cos( t2 ) + 0.1
1 + x1.5(t− 2) + te−t, t ≥ 0 (4.7)

and
x′(t) = −

(
0.15 sin

(
t

2

)
+ 0.10

)
x(t) +

0.1 cos( t2 ) + 0.1
1 + x1.5(t− 2) , t ≥ 0. (4.8)

Eq. (4.7) takes the form of Eq. (4.1) with a(t) = 0.15 sin
(
t
2
)

+ 0.10, b(t) = 0.1 cos
(
t
2
)
+

0.1, r(t) = te−t, γ = 1.5, τ = 2, and ω = 4π. When r(t) ≡ 0, Eq. (4.7) reduces to
Eq. (4.8), which takes the form of Eq. (4.2). Clearly,

∫ ω
0 a(t)dt > 0 and lim

t→∞
r(t) = 0.

As γ > 1 we numerically verify that

(γ − 1)
γ−1
γ (γ + 1)

γ+1
γ

4γ

t+τ+ω∫

t

b(s)e−
∫ t+τ+ω

s
a(u)du

ds

= (γ − 1)
γ−1
γ (γ + 1)

γ+1
γ

4γ

t+2+4π∫

t

(
0.1 cos

(s
2

)
+ 0.1

)
e
−
∫ t+2+4π

s
(0.15 sin(u2 )+0.10)duds

< 1, t ∈ [0, 4π].

From Corollary 4.1, we see that Eq. (4.8) has a unique nonnegative 4π-periodic solution
x̃(t) and every nonnegative solution of Eq. (4.7) and Eq. (4.8) converges to x̃(t). The
solution for a particular initial condition is shown in Figure 2.
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Fig. 2. Graph of solution x(t) of Eq. (4.7) with initial function φ(t) = 2t2
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