期刊论文详细信息
Frontiers in Cellular Neuroscience
Distinct Distribution Patterns of Potassium Channel Sub-Units in Somato-Dendritic Compartments of Neurons of the Medial Superior Olive
Christian Leibold1  Alexander R. Callan3  Alisha L. Nabel3  Sarah A. Gleiss3  Felix Felmy4  Nikolaos Kladisios4 
[1] Computational Neuroscience, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany;Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany;Graduate School for Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany;Institute of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany;
关键词: medial superior olive;    potassium channel;    potassium currents;    sub-cellular localization;    postsynaptic integration;   
DOI  :  10.3389/fncel.2019.00038
来源: DOAJ
【 摘 要 】

Coincidence detector neurons of the medial superior olive (MSO) are sensitive to interaural time differences in the range of a few tens of microseconds. The biophysical basis for this remarkable acuity is a short integration time constant of the membrane, which is achieved by large low voltage-activated potassium and hyperpolarization-activated inward cation conductances. Additional temporal precision is thought to be achieved through a sub-cellular distribution of low voltage-activated potassium channel expression biased to the soma. To evaluate the contribution of potassium channels, we investigated the presence and sub-cellular distribution profile of seven potassium channel sub-units in adult MSO neurons of gerbils. We find that low- and high voltage-activated potassium channels are present with distinct sub-cellular distributions. Overall, low voltage-activated potassium channels appear to be biased to the soma while high voltage-activated potassium channels are more evenly distributed and show a clear expression at distal dendrites. Additionally, low voltage-activated potassium channel sub-units co-localize with glycinergic inputs while HCN1 channels co-localize more with high voltage-activated potassium channels. Functionally, high voltage-activated potassium currents are already active at low voltages near the resting potential. We describe a possible role of high voltage-activated potassium channels in modulating EPSPs in a computational model and contributing to setting the integration time window of coincidental inputs. Our data shows that MSO neurons express a large set of different potassium channels with distinct functional relevance.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次