期刊论文详细信息
Journal of Nanobiotechnology
Novel brain-targeted nanomicelles for anti-glioma therapy mediated by the ApoE-enriched protein corona in vivo
Yan-hong Liu1  He-ming Zhao1  Zhe-Ao Zhang1  Chao Liu1  Hong-Xia Duan1  Li-Qing Chen1  Ming-Ji Jin1  Xin Xin1  Wei Huang1  Ling-ling Qi1  Zhong-Gao Gao1  Ying-Ying Zhang1 
[1] State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College;
关键词: ApoE protein corona;    Glioma;    Targeting therapy;    Paclitaxel;   
DOI  :  10.1186/s12951-021-01097-8
来源: DOAJ
【 摘 要 】

Abstract Background The interactions between nanoparticles (NPs) and plasma proteins form a protein corona around NPs after entering the biological environment, which provides new biological properties to NPs and mediates their interactions with cells and biological barriers. Given the inevitable interactions, we regard nanoparticle‒protein interactions as a tool for designing protein corona-mediated drug delivery systems. Herein, we demonstrate the successful application of protein corona-mediated brain-targeted nanomicelles in the treatment of glioma, loading them with paclitaxel (PTX), and decorating them with amyloid β-protein (Aβ)-CN peptide (PTX/Aβ-CN-PMs). Aβ-CN peptide, like the Aβ1–42 peptide, specifically binds to the lipid-binding domain of apolipoprotein E (ApoE) in vivo to form the ApoE-enriched protein corona surrounding Aβ-CN-PMs (ApoE/PTX/Aβ-CN-PMs). The receptor-binding domain of the ApoE then combines with low-density lipoprotein receptor (LDLr) and LDLr-related protein 1 receptor (LRP1r) expressed in the blood–brain barrier and glioma, effectively mediating brain-targeted delivery. Methods PTX/Aβ-CN-PMs were prepared using a film hydration method with sonication, which was simple and feasible. The specific formation of the ApoE-enriched protein corona around nanoparticles was characterized by Western blotting analysis and LC–MS/MS. The in vitro physicochemical properties and in vivo anti-glioma effects of PTX/Aβ-CN-PMs were also well studied. Results The average size and zeta potential of PTX/Aβ-CN-PMs and ApoE/PTX/Aβ-CN-PMs were 103.1 nm, 172.3 nm, 7.23 mV, and 0.715 mV, respectively. PTX was efficiently loaded into PTX/Aβ-CN-PMs, and the PTX release from rhApoE/PTX/Aβ-CN-PMs exhibited a sustained-release pattern in vitro. The formation of the ApoE-enriched protein corona significantly improved the cellular uptake of Aβ-CN-PMs on C6 cells and human umbilical vein endothelial cells (HUVECs) and enhanced permeability to the blood–brain tumor barrier in vitro. Meanwhile, PTX/Aβ-CN-PMs with ApoE-enriched protein corona had a greater ability to inhibit cell proliferation and induce cell apoptosis than taxol. Importantly, PTX/Aβ-CN-PMs exhibited better anti-glioma effects and tissue distribution profile with rapid accumulation in glioma tissues in vivo and prolonged median survival of glioma-bearing mice compared to those associated with PMs without the ApoE protein corona. Conclusions The designed PTX/Aβ-CN-PMs exhibited significantly enhanced anti-glioma efficacy. Importantly, this study provided a strategy for the rational design of a protein corona-based brain-targeted drug delivery system. More crucially, we utilized the unfavorable side of the protein corona and converted it into an advantage to achieve brain-targeted drug delivery. Graphical Abstract

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次