期刊论文详细信息
Remote Sensing
The Consistency of SSM/I vs. SSMIS and the Influence on Snow Cover Detection and Snow Depth Estimation over China
Liyun Dai1  Shengli Wu2  Jinmei Pan3  Gongxue Wang4  Jianwei Yang4  Lingmei Jiang4 
[1] Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China;State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100010, China;State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing Engineering Research Center for Global Land Remote Sensing Products, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;
关键词: consistency;    snow cover;    snow depth;    SSM/I and SSMIS;    China;   
DOI  :  10.3390/rs11161879
来源: DOAJ
【 摘 要 】

The long-term variations in snow depth are important in hydrological, meteorological, and ecological implications and climatological studies. The series of Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) instruments onboard the Defense Meteorological Satellite Program (DMSP) platforms has provided a consistent 30+ year data record of global observations that is well-suited for the estimation of snow cover, snow depth, and snow water equivalent (SWE). To maximize the use of this continuous microwave observation dataset in long-term snow analysis and obtain an objective result, consistency among the SSM/I and SSMIS sensors is required. In this paper, we evaluated the consistency between the SSM/I and SSMIS concerning the observed brightness temperature (Tb) and the retrieved snow cover area and snow depth from January 2007 to December 2008, where the F13 SSM/I and the F17 SSMIS overlapped. Results showed that Tb bias at 19 GHz spans from −2 to −3 K in snow winter seasons, and from −4 to −5 K in non-snow seasons. There is a slight Tb bias at 37 GHz from −2 to 2 K, regardless of season. For 85 (91) GHz, the bias presents some uncertainty from the scattering effect of the snowpack and atmospheric emission. The overall consistency between SSM/I and SSMIS with respect to snow cover detection is between 80% and 100%, which will result in a maximum snow cover area difference of 25 × 104 km2 in China. The inconsistency in Tb between SSM/I and SSMIS can result in a −2 and −0.67 cm snow depth bias for the dual-channel and multichannel algorithms, respectively. SSMIS tends to yield lower snow depth estimates than SSM/I. Moreover, there are notable bias differences between SSM/I- and SSMIS-estimated snow depths in the tundra and taiga snow classes. Our results indicate the importance of considering the Tb bias in microwave snow cover detection and snow depth retrieval and point out that, due to the sensitivity of bias to seasons, it is better to do the intercalibration with a focus on snow-covered winter seasons. Otherwise, the bias in summer will disturb the calibration coefficients and introduce more error into the snow retrievals if the seasonal difference is not carefully evaluated and separated.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:5次