期刊论文详细信息
Marine Drugs
Mining the Metabolome and the Agricultural and Pharmaceutical Potential of Sea Foam-Derived Fungi
Ernest Oppong-Danquah1  Martina Blümel1  Deniz Tasdemir1  Orazio Chianese1  Cristina Passaretti1 
[1] GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany;
关键词: sea foam;    marine fungi;    metabolomics;    molecular network;    phytopathogen;    antimicrobial activity;   
DOI  :  10.3390/md18020128
来源: DOAJ
【 摘 要 】

Sea foam harbors a diverse range of fungal spores with biological and ecological relevance in marine environments. Fungi are known as the producers of secondary metabolites that are used in health and agricultural sectors, however the potentials of sea foam-derived fungi have remained unexplored. In this study, organic extracts of six foam-derived fungal isolates belonging to the genera Penicillium, Cladosporium, Emericellopsis and Plectosphaerella were investigated for their antimicrobial activity against plant and human pathogens and anticancer activity. In parallel, an untargeted metabolomics study using UPLC-QToF−MS/MS-based molecular networking (MN) was performed to unlock their chemical inventory. Penicillium strains were identified as the most prolific producers of compounds with an average of 165 parent ions per strain. In total, 49 known mycotoxins and functional metabolites were annotated to specific and ubiquitous parent ions, revealing considerable chemical diversity. This allowed the identification of putative new derivatives, such as a new analog of the antimicrobial tetrapeptide, fungisporin. Regarding bioactivity, the Penicillium sp. isolate 31.68F1B showed a strong and broad-spectrum activity against seven plant and human pathogens, with the phytopathogen Magnaporthe oryzae and the human pathogen Candida albicans being the most susceptible (IC50 values 2.2 and 6.3 µg/mL, respectively). This is the first study mining the metabolome of the sea foam-derived fungi by MS/MS-based molecular networking, and assessing their biological activities against phytopathogens.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:8次