期刊论文详细信息
Materials
Laser Surface Alloying of Austenitic 316L Steel with Boron and Some Metallic Elements: Properties
Piotr Dziarski1  Michał Kulka1  Dominika Panfil-Pryka1  Daria Mikołajczak2 
[1] Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, Poland;WSK Poznan Ltd., Unii Lubelskiej Street 3, 61-249 Poznan, Poland;
关键词: laser surface alloying;    laser boriding;    316L steel;    hardness;    wear resistance;    corrosion resistance;   
DOI  :  10.3390/ma14112987
来源: DOAJ
【 摘 要 】

Austenitic 316L stainless steel is known for its good resistance to corrosion and oxidation. However, under conditions of appreciable mechanical wear, this steel had to demonstrate suitable wear protection. In this study, laser surface alloying with boron and some metallic elements was used in order to improve the hardness and wear behavior of this material. The microstructure was described in the previous paper in detail. The microhardness was measured using Vickers method. The “block-on-ring” technique was used in order to evaluate the wear resistance of laser-alloyed layers, whereas, the potentiodynamic method was applied to evaluate their corrosion behavior. The produced laser-alloyed layers consisted of hard ceramic phases (Fe2B, Cr2B, Ni2B or Ni3B borides) in a soft austenitic matrix. The significant increase in hardness and wear resistance was observed in the case of all the laser-alloyed layers in comparison to the untreated 316L steel. The predominant abrasive wear was accompanied by adhesive and oxidative wear evidenced by shallow grooves, adhesion craters and the presence of oxides. The corrosion resistance of laser-alloyed layers was not considerably diminished. The laser-alloyed layer with boron and nickel was the best in this regard, obtaining nearly the same corrosion behavior as the untreated 316L steel.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次