Photonics | |
Exploring the Potential of Airyscan Microscopy for Live Cell Imaging | |
Kseniya Korobchevskaya1  Marco Fritzsche1  Huw Colin-York2  B. Christoffer Lagerholm3  | |
[1] Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford OX3 7LF, UK;MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK;Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK; | |
关键词: Airyscan; microscopy; confocal and super-resolution microscopy; signal-to-noise-ratio; | |
DOI : 10.3390/photonics4030041 | |
来源: DOAJ |
【 摘 要 】
Biological research increasingly demands the use of non-invasive and ultra-sensitive imaging techniques. The Airyscan technology was recently developed to bridge the gap between conventional confocal and super-resolution microscopy. This technique combines confocal imaging with a 0.2 Airy Unit pinhole, deconvolution and the pixel-reassignment principle in order to enhance both the spatial resolution and signal-to-noise-ratio without increasing the excitation power and acquisition time. Here, we present a detailed study evaluating the performance of Airyscan as compared to confocal microscopy by imaging a variety of reference samples and biological specimens with different acquisition and processing parameters. We found that the processed Airyscan images at default deconvolution settings have a spatial resolution similar to that of conventional confocal imaging with a pinhole setting of 0.2 Airy Units, but with a significantly improved signal-to-noise-ratio. Further gains in the spatial resolution could be achieved by the use of enhanced deconvolution filter settings, but at a steady loss in the signal-to-noise ratio, which at more extreme settings resulted in significant data loss and image distortion.
【 授权许可】
Unknown