期刊论文详细信息
Polymers
Crystallization and Thermal Behaviors of Poly(Ethylene Terephthalate)/Bisphenols Complexes Through Melt Post-Polycondensation
Shichang Chen1  Xianming Zhang1  Jianna Bao1  Shangdong Xie2  Shanshan Guang2  Wenxing Chen2 
[1] Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education (Zhejiang Sci-Tech University), Hangzhou 310018, China;School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
关键词: poly(ethylene terephthalate);    bisphenol;    crystallization kinetics;    thermal property;    melt polycondensation;   
DOI  :  10.3390/polym12123053
来源: DOAJ
【 摘 要 】

Three kinds of modified poly(ethylene terephthalate) (PET) were prepared by solution blending combined with melt post-polycondensation, using 4,4′-thiodiphenol (TDP), 4,4′-oxydiphenol (ODP) and hydroquinone (HQ) as the bisphenols, respectively. The effects of TDP, ODP and HQ on melt post-polycondensation process and crystallization kinetics, melting behaviors, crystallinity and thermal stability of PET/bisphenols complexes were investigated in detail. Excellent chain growth of PET could be achieved by addition of 1 wt% bisphenols, but intrinsic viscosity of modified PET decreased with further bisphenols content. Intermolecular hydrogen bonding between carbonyl groups of PET and hydroxyl groups of bisphenols were verified by Fourier transform infrared spectroscopy. Compare to pure PET, both the crystallization rate and melting temperatures of PET/bisphenols complexes were reduced obviously, suggesting an impeded crystallization and reduced lamellar thickness. Moreover, the structural difference between TDP, ODP and HQ played an important role on crystallization kinetics. It was proposed that the crystallization rate of TDP modified PET was reduced significantly due to the larger amount of rigid benzene ring and larger polarity than that of PET with ODP or HQ. X-ray diffraction results showed that the crystalline structure of PET did not change from the incorporation of bisphenols, but crystallinity of PET decreased with increasing bisphenols content. Thermal stability of modified PET declined slightly, which was hardly affected by the molecular structure of bisphenols.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次