期刊论文详细信息
Food Science & Nutrition
The generalized predictive control of bacteria concentration in marine lysozyme fermentation process
Xianglin Zhu1  Ziyan Zhu1 
[1] School of Electrical and Information Engineering Jiangsu University Zhenjiang Jiangsu China;
关键词: bacteria concentration;    generalized predictive control;    least squares support vector machine;    lysozyme;    particle swarm optimization;   
DOI  :  10.1002/fsn3.850
来源: DOAJ
【 摘 要 】

Abstract Due to the high degree of strong coupling and nonlinearity of marine lysozyme fermentation process, it is difficult to accurately model the mechanism. In order to achieve real‐time online measurement and effective control of bacterial concentration during fermentation, a generalized predictive control method based on least squares support vector machines is proposed. The particle swarm optimization least squares support vector machine (PSO‐LS‐SVM) model of lysozyme concentration is established by optimizing the regularization parameters and the kernel parameters of the least squares support vector machine by particle swarm optimization. To avoid the nonlinear problems in predictive control, the model is linearized at each sampling point and the generalized predictive algorithm is used to predict the bacteria concentration of lysozyme. The experimental simulation shows that the least squares support vector machine model with particle swarm optimization can achieve good prediction effect. The linearized model performs generalized predictive control, which makes the total activity of the enzyme increased from 60% to 80% and the yield improved by 30%.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次