期刊论文详细信息
eLife
A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila
Markus Affolter1  Ilaria Alborelli2  Stefan Harmansa2  Emmanuel Caussinus2  Dimitri Bieli2 
[1] Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland;Growth and Development, Biozentrum, University of Basel, Basel, Switzerland;
关键词: nanobody;    morphogen;    Dpp;    protein localization;   
DOI  :  10.7554/eLife.22549
来源: DOAJ
【 摘 要 】

The role of protein localization along the apical-basal axis of polarized cells is difficult to investigate in vivo, partially due to lack of suitable tools. Here, we present the GrabFP system, a collection of four nanobody-based GFP-traps that localize to defined positions along the apical-basal axis. We show that the localization preference of the GrabFP traps can impose a novel localization on GFP-tagged target proteins and results in their controlled mislocalization. These new tools were used to mislocalize transmembrane and cytoplasmic GFP fusion proteins in the Drosophila wing disc epithelium and to investigate the effect of protein mislocalization. Furthermore, we used the GrabFP system as a tool to study the extracellular dispersal of the Decapentaplegic (Dpp) protein and show that the Dpp gradient forming in the lateral plane of the Drosophila wing disc epithelium is essential for patterning of the wing imaginal disc.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次