期刊论文详细信息
EvoDevo
Components of the dorsal-ventral pathway also contribute to anterior-posterior patterning in honeybee embryos (Apis mellifera)
Peter K Dearden1  Nathan J Kenny2  Megan J Wilson3 
[1] Laboratory for Evolution and Development, Genetics Otago and Gravida, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;Current address: Evolution and Development Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK;Developmental Biology Laboratory, Department of Anatomy, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
关键词: Toll;    Honeybee;    Evolution;    Dpp;    Dorsal ventral;    Axis formation;    Apis mellifera;    Anterior posterior;   
Others  :  801888
DOI  :  10.1186/2041-9139-5-11
 received in 2013-10-07, accepted in 2014-01-20,  发布年份 2014
PDF
【 摘 要 】

Background

A key early step in embryogenesis is the establishment of the major body axes; the dorsal-ventral (DV) and anterior-posterior (AP) axes. Determination of these axes in some insects requires the function of different sets of signalling pathways for each axis. Patterning across the DV axis requires interaction between the Toll and Dpp/TGF-β pathways, whereas patterning across the AP axis requires gradients of bicoid/orthodenticle proteins and the actions of a hierarchy of gene transcription factors. We examined the expression and function of Toll and Dpp signalling during honeybee embryogenesis to assess to the role of these genes in DV patterning.

Results

Pathway components that are required for dorsal specification in Drosophila are expressed in an AP-restricted pattern in the honeybee embryo, including Dpp and its receptor Tkv. Components of the Toll pathway are expressed in a more conserved pattern along the ventral axis of the embryo. Late-stage embryos from RNA interference (RNAi) knockdown of Toll and Dpp pathways had both DV and AP patterning defects, confirmed by staining with Am-sna, Am-zen, Am-eve, and Am-twi at earlier stages. We also identified two orthologues of dorsal in the honeybee genome, with one being expressed during embryogenesis and having a minor role in axis patterning, as determined by RNAi and the other expressed during oogenesis.

Conclusions

We found that early acting pathways (Toll and Dpp) are involved not only in DV patterning but also AP patterning in honeybee embryogenesis. Changes to the expression patterns and function of these genes may reflect evolutionary changes in the placement of the extra-embryonic membranes during embryogenesis with respect to the AP and DV axes.

【 授权许可】

   
2014 Wilson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708013455428.pdf 3360KB PDF download
Figure 6. 57KB Image download
Figure 5. 93KB Image download
Figure 4. 64KB Image download
Figure 3. 105KB Image download
Figure 2. 80KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Lynch J, Desplan C: ‘De-evolution’ of Drosophila toward a more generic mode of axis patterning. Int J Dev Biol 2003, 47:497-503.
  • [2]Lynch JA, El-Sherif E, Brown SJ: Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium. Dev Biol 2012, 1:16-39.
  • [3]Rafiqi AM, Lemke S, Ferguson S, Stauber M, Schmidt-Ott U: Evolutionary origin of the amnioserosa in cyclorrhaphan flies correlates with spatial and temporal expression changes of zen. Proc Natl Acad Sci USA 2008, 105:234-239.
  • [4]Panfilio KA, Liu PZ, Akam M, Kaufman TC: Oncopeltus fasciatus zen is essential for serosal tissue function in katatrepsis. Dev Biol 2006, 292:226-243.
  • [5]Rafiqi AM, Park CH, Kwan CW, Lemke S, Schmidt-Ott U: BMP-dependent serosa and amnion specification in the scuttle fly Megaselia abdita. Development 2012, 139:3373-3382.
  • [6]Dearden P, Grbic M, Falciani F, Akam M: Maternal expression and early zygotic regulation of the Hox3/zen gene in the grasshopper Schistocerca gregaria. Evol Dev 2000, 2:261-270.
  • [7]Wilson MJ, Dearden PK: Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera). Development 2011, 138:3497-3507.
  • [8]van der Zee M, Berns N, Roth S: Distinct functions of the Tribolium zerknullt genes in serosa specification and dorsal closure. Curr Biol 2005, 15:624-636.
  • [9]Marques G, Musacchio M, Shimell MJ, Wunnenberg-Stapleton K, Cho KW, O’Connor MB: Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell 1997, 91:417-426.
  • [10]Ferguson EL, Anderson KV: Localized enhancement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. Development 1992, 114:583-597.
  • [11]Irish VF, Gelbart WM: The decapentaplegic gene is required for dorsal-ventral patterning of the Drosophila embryo. Genes Dev 1987, 1:868-879.
  • [12]Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM: Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 1995, 139:1347-1358.
  • [13]Van Der Zee M, Stockhammer O, Von Levetzow C, Nunes DA, Fonseca R, Roth S: Sog/Chordin is required for ventral-to-dorsal Dpp/BMP transport and head formation in a short germ insect. Proc Natl Acad Sci USA 2006, 103:16307-16312.
  • [14]Wilson MJ, Abbott H, Dearden PK: The evolution of oocyte patterning in insects: multiple cell-signalling pathways are active during honeybee oogenesis and are likely to play a role in axis patterning. Evol Dev 2011, 13:127-137.
  • [15]Lynch JA, Roth S: The evolution of dorsal-ventral patterning mechanisms in insects. Genes Dev 2011, 25:107-118.
  • [16]Peri F, Technau M, Roth S: Mechanisms of Gurken-dependent pipe regulation and the robustness of dorsoventral patterning in Drosophila. Development 2002, 129:2965-2975.
  • [17]Moussian B, Roth S: Dorsoventral axis formation in the Drosophila embryo–shaping and transducing a morphogen gradient. Curr Biol 2005, 15:R887-899.
  • [18]Morgan MM, Mahowald AP: Multiple signalling pathways establish both the individuation and the polarity of the oocyte follicle in Drosophila. Arch Insect Biochem Physiol 1996, 33:211-230.
  • [19]Dearden PK, Wilson MJ, Sablan L, Osborne PW, Havler M, McNaughton E, Kimura K, Milshina NV, Hasselmann M, Gempe T, Schioett M, Brown SJ, Elsik CG, Holland PW, Kadowaki T, Beye M: Patterns of conservation and change in honey bee developmental genes. Genome Res 2006, 16:1376-1384.
  • [20]Shigenobu S, Bickel RD, Brisson JA, Butts T, Chang CC, Christiaens O, Davis GK, Duncan EJ, Ferrier DE, Iga M, Janssen R, Lin GW, Lu HL, McGregor AP, Miura T, Smagghe G, Smith JM, van der Zee M, Velarde RA, Wilson MJ, Dearden PK, Stern DL: Comprehensive survey of developmental genes in the pea aphid, Acyrthosiphon pisum: frequent lineage-specific duplications and losses of developmental genes. Insect Mol Biol 2010, 19(Suppl 2):47-62.
  • [21]Lynch JA, Peel AD, Drechsler A, Averof M, Roth S: EGF Signalling and the origin of axial polarity among the insects. Curr Biol 2010, 20(11):1042-1047.
  • [22]Reach M, Galindo RL, Towb P, Allen JL, Karin M, Wasserman SA: A gradient of cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. Dev Biol 1996, 180:353-364.
  • [23]Belvin MP, Jin Y, Anderson KV: Cactus protein degradation mediates Drosophila dorsal-ventral signalling. Genes Dev 1995, 9:783-793.
  • [24]Roth S, Hiromi Y, Godt D, Nusslein-Volhard C: Cactus, a maternal gene required for proper formation of the dorsoventral morphogen gradient in Drosophila embryos. Development 1991, 112:371-388.
  • [25]Nunes DA, Fonseca R, Von Levetzow C, Kalscheuer P, Basal A, Van Der Zee M, Roth S: Self-regulatory circuits in dorsoventral axis formation of the short-germ beetle Tribolium castaneum. Dev Cell 2008, 14:605-615.
  • [26]Finkelstein R, Perrimon N: The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature 1990, 346:485-488.
  • [27]Lynch JA, Brent AE, Leaf DS, Pultz MA, Desplan C: Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature 2006, 439:728-732.
  • [28]Pechmann M, McGregor AP, Schwager EE, Feitosa NM, Damen WG: Dynamic gene expression is required for anterior regionalization in a spider. Proc Natl Acad Sci U S A 2009, 106:1468-1472.
  • [29]Kotkamp K, Klingler M, Schoppmeier M: Apparent role of Tribolium orthodenticle in anteroposterior blastoderm patterning largely reflects novel functions in dorsoventral axis formation and cell survival. Development 2010, 137:1853-1862.
  • [30]Osborne PW, Dearden PK: Expression of Pax group III genes in the honeybee (Apis mellifera). Dev Genes Evol 2005, 215:499-508.
  • [31]Ferguson EL: Conservation of dorsal-ventral patterning in arthropods and chordates. Curr Opin Genet Dev 1996, 6:424-431.
  • [32]Munoz-Torres MC, Reese JT, Childers CP, Bennett AK, Sundaram JP, Childs KL, Anzola JM, Milshina N, Elsik CG: Hymenoptera Genome Database: integrated community resources for insect species of the order Hymenoptera. Nucleic Acids Res 2011, 39:D658-662.
  • [33]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [34]Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R: Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinforma 2007, 8:460. BioMed Central Full Text
  • [35]Dearden PK, Duncan EJ, Wilson MJ: Whole-mount in situ hybridization of honeybee (Apis mellifera) tissues. Cold Spring Harb Protoc 2009, 2009(6):pdb. prot5225.
  • [36]Wilson MJ, Dearden PK: Tailless patterning functions are conserved in the honeybee even in the absence of Torso signalling. Dev Biol 2009, 335:276-287.
  • [37]Dearden PK, Duncan EJ, Wilson MJ: RNA interference (RNAi) in honeybee (Apis mellifera) embryos. Cold Spring Harb Protoc 2009, 2009(6):pdb. prot5228.
  • [38]Wotton KR, Alcaine Colet A, Jaeger J, Jimenez Guri E: Evolution and expression of BMP genes in flies. Dev Genes Evol 2013, 223(5):335-340.
  • [39]St Johnston RD, Gelbart WM: Decapentaplegic transcripts are localized along the dorsal-ventral axis of the Drosophila embryo. Embo J 1987, 6:2785-2791.
  • [40]Lemke S, Antonopoulos DA, Meyer F, Domanus MH, Schmidt-Ott U: BMP signalling components in embryonic transcriptomes of the hover fly Episyrphus balteatus (Syrphidae). BMC Genomics 2011, 12:278. BioMed Central Full Text
  • [41]Goltsev Y, Fuse N, Frasch M, Zinzen RP, Lanzaro G, Levine M: Evolution of the dorsal-ventral patterning network in the mosquito, Anopheles gambiae. Development 2007, 134:2415-2424.
  • [42]Dearden PK, Akam M: Early embryo patterning in the grasshopper, Schistocerca gregaria: wingless, decapentaplegic and caudal expression. Development 2001, 128:3435-3444.
  • [43]Nellen D, Affolter M, Basler K: Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell 1994, 78:225-237.
  • [44]Affolter M, Nellen D, Nussbaumer U, Basler K: Multiple requirements for the receptor serine/threonine kinase thick veins reveal novel functions of TGF beta homologs during Drosophila embryogenesis. Development 1994, 120:3105-3117.
  • [45]O’Connor MB, Umulis D, Othmer HG, Blair SS: Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development 2006, 133:183-193.
  • [46]Nunes DA, Fonseca R, Van Der Zee M, Roth S: Evolution of extracellular Dpp modulators in insects: The roles of Tolloid and twisted-gastrulation in dorsoventral patterning of the Tribolium embryo. Dev Biol 2010, 345:80-93.
  • [47]Jazwinska A, Rushlow C, Roth S: The role of brinker in mediating the graded response to Dpp in early Drosophila embryos. Development 1999, 126:3323-3334.
  • [48]Buchta T, Ozuak O, Stappert D, Roth S, Lynch JA: Patterning the dorsal-ventral axis of the wasp Nasonia vitripennis. Dev Biol 2013, 381:189-202.
  • [49]Sen J, Goltz JS, Stevens L, Stein D: Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 1998, 95:471-481.
  • [50]Blank V, Kourilsky P, Israel A: NF-kappa B and related proteins: Rel/dorsal homologies meet ankyrin-like repeats. Trends Biochem Sci 1992, 17:135-140.
  • [51]Steward R, Zusman SB, Huang LH, Schedl P: The dorsal protein is distributed in a gradient in early Drosophila embryos. Cell 1988, 55:487-495.
  • [52]Anderson KV, Nusslein-Volhard C: Information for the dorsal–ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 1984, 311:223-227.
  • [53]Doyle HJ, Harding K, Hoey T, Levine M: Transcripts encoded by a homoeo box gene are restricted to dorsal tissues of Drosophila embryos. Nature 1986, 323:76-79.
  • [54]Sommer RJ, Tautz D: Expression patterns of twist and snail in Tribolium (Coleoptera) suggest a homologous formation of mesoderm in long and short germ band insects. Dev Genet 1994, 15:32-37.
  • [55]Ashraf SI, Ip YT: The Snail protein family regulates neuroblast expression of 56. inscuteable and string, genes involved in asymmetry and cell division in Drosophila. Development 2001, 128:4757-4767.
  • [56]Ip YT, Levine M, Bier E: Neurogenic expression of snail is controlled by separable CNS and PNS promoter elements. Development 1994, 120:199-207.
  • [57]Alberga A, Boulay JL, Kempe E, Dennefeld C, Haenlin M: The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ layers. Development 1991, 111:983-992.
  • [58]Wilson MJ, Dearden PK: Pair-rule gene orthologues have unexpected maternal roles in the honeybee (Apis mellifera). PLoS ONE 2012, 7:e46490.
  • [59]Wilson MJ, Havler M, Dearden PK: Giant, Kruppel, and caudal act as gap genes with extensive roles in patterning the honeybee embryo. Dev Biol 2010, 339:200-211.
  • [60]Stauber M, Prell A, Schmidt-Ott U: A single Hox3 gene with composite bicoid and zerknullt expression characteristics in non-Cyclorrhaphan flies. Proc Natl Acad Sci USA 2002, 99:274-279.
  • [61]Olesnicky EC, Brent AE, Tonnes L, Walker M, Pultz MA, Leaf D, Desplan C: A caudal mRNA gradient controls posterior development in the wasp Nasonia. Development 2006, 133:3973-3982.
  文献评价指标  
  下载次数:72次 浏览次数:21次