期刊论文详细信息
Bioactive Materials
Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants
Kai Zhang1  Zhao Xie1  Dong Sun2  Xiangdong Zhu2  Xiaohua Wang2  Wei Zhi3  Taijun Chen3  Jianxin Wang3  Xuening Chen4  Bo Yuan4  Xingdong Zhang4  Xiangfeng Li4 
[1] Corresponding author.;Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University(Army Medical University), Gaotanyan No.30, 400038, Chongqing, China;Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China;National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China;
关键词: Calcium phosphate bioceramics;    Large segmental bone defects;    Bone regenerative repair;    Osteoinduction;    Mechanical stability;   
DOI  :  
来源: DOAJ
【 摘 要 】

So far, how to achieve the optimal regenerative repair of large load-bearing bone defects using artificial bone grafts is a huge challenge in clinic. In this study, a strategy of combining osteoinductive biphasic calcium phosphate (BCP) bioceramic scaffolds with intramedullary nail fixation for creating stable osteogenic microenvironment was applied to repair large segmental bone defects (3.0 cm in length) in goat femur model. The material characterization results showed that the BCP scaffold had the initial compressive strength of over 2.0 MPa, and total porosity of 84%. The cell culture experiments demonstrated that the scaffold had the excellent ability to promote the proliferation and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs). The in vivo results showed that the intramedullary nail fixation maintained the initial stability and structural integrity of the implants at early stage, promoting the osteogenic process both guided and induced by the BCP scaffolds. At 9 months postoperatively, good integration between the implants and host bone was observed, and a large amount of newborn bones formed, accompanying with the degradation of the material. At 18 months postoperatively, almost the complete new bone substitution in the defect area was achieved. The maximum bending strength of the repaired bone defects reached to the 100% of normal femur at 18 months post-surgery. Our results demonstrated the good potential of osteoinductive BCP bioceramics in the regenerative repair of large load-bearing bone defects. The current study could provide an effective method to treat the clinical large segmental bone defects.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次