期刊论文详细信息
Sustainability
Pattern Matching Trading System Based on the Dynamic Time Warping Algorithm
HeeSoo Lee1  HanJun Ko2  HyunWoo Byun2  KyongJoo Oh2  SeungHwan Jeong2  SangHyuk Kim2 
[1] Department of Business Administration, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 03722, Korea;Department of Industrial Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
关键词: dynamic time warping;    pattern matching trading system;    time series data;    sliding window;   
DOI  :  10.3390/su10124641
来源: DOAJ
【 摘 要 】

The futures market plays a significant role in hedging and speculating by investors. Although various models and instruments are developed for real-time trading, it is difficult to realize profit by processing and trading a vast amount of real-time data. This study proposes a real-time index futures trading strategy that uses the KOSPI 200 index futures time series data. We construct a pattern matching trading system (PMTS) based on a dynamic time warping algorithm that recognizes patterns of market data movement in the morning and determines the afternoon’s clearing strategy. We adopt 13 and 27 representative patterns and conduct simulations with various ranges of parameters to find optimal ones. Our experimental results show that the PMTS provides stable and effective trading strategies with relatively low trading frequencies. Financial market investors are able to make more efficient investment strategies by using the PMTS. In this sense, the system developed in this paper contributes the efficiency of the financial markets and helps to achieve sustained economic growth.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次