期刊论文详细信息
Brazilian Journal of Chemical Engineering
Detection and on-line prediction of leak magnitude in a gas pipeline using an acoustic method and neural network data processing
F. V. da Silva1  E. O. de Sousa1  S. L. da Cruz1  R. B. Santos1  A. M. F. Fileti1 
[1] Universidade Estadual de Campinas;
关键词: Pipeline network;    Leak detection;    Neural networks;   
DOI  :  10.1590/S0104-66322014000100014
来源: DOAJ
【 摘 要 】

Considering the importance of monitoring pipeline systems, this work presents the development of a technique to detect gas leakage in pipelines, based on an acoustic method, and on-line prediction of leak magnitude using artificial neural networks. On-line audible noises generated by leakage were obtained with a microphone installed in a 60 m long pipeline. The sound noises were decomposed into sounds of different frequencies: 1 kHz, 5 kHz and 9 kHz. The dynamics of these noises in time were used as input to the neural model in order to determine the occurrence and the leak magnitude. The results indicated the great potential of the technique and of the developed neural network models. For all on-line tests, the models showed 100% accuracy in leak detection, except for a small orifice (1 mm) under 4 kgf/cm² of nominal pressure. Similarly, the neural network models could adequately predict the magnitude of the leakages.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次