期刊论文详细信息
Remote Sensing
Grassland Phenology Response to Drought in the Canadian Prairies
Tengfei Cui1  Lawrence Martz1  Xulin Guo1 
[1] Department of Geography and Planning, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada;
关键词: grassland phenology;    SPEI;    precipitation;    GIMMS NDVI3g;   
DOI  :  10.3390/rs9121258
来源: DOAJ
【 摘 要 】

Drought is a significant climatic disturbance in grasslands, yet the impact drought caused by global warming has on grassland phenology is still unclear. Our research investigates the long-term variability of grassland phenology in relation to drought in the Canadian prairies from 1982 to 2014. Based on the start of growing season (SOG) and the end of growing season (EOG) derived from Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g datasets, we found that grasslands demonstrated complex phenology trends over our study period. We retrieved the drought conditions of the prairie ecozone at multiple time scales from the 1- to 12-month Standardized Precipitation Evapotranspiration Index (SPEI). We evaluated the correlations between the detrended time series of phenological metrics and SPEIs through Pearson correlation analysis and identified the dominant drought where the maximum correlations were found for each ecozone and each phenological metric. The dominant drought over preceding months account for 14–33% and 26–44% of the year-to-year variability of SOG and EOG, respectively, and fewer water deficits would favor an earlier SOG and delayed EOG. The drought-induced shifts in SOG and EOG were determined based on the correlation between the dominant drought and the year-to-year variability using ordinary least square (OLS) method. Our research also quantifies the correlation between precipitation and the evolution of the dominant droughts and the drought-induced shifts in grassland phenology. Every millimeter (mm) increase in precipitation accumulated over the dominant periods would cause SOG to occur 0.06–0.21 days earlier, and EOG to occur 0.23–0.45 days later. Our research reveals a complex phenology response in relation to drought in the Canadian prairie grasslands and demonstrates that drought is a significant factor in the timing of both SOG and EOG. Thus, it is necessary to include drought-related climatic variables when predicting grassland phenology response to climate change and variability.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次