期刊论文详细信息
NeuroImage
Resting state functional atlas and cerebral networks in mouse lemur primates at 11.7 Tesla
Nachiket A. Nadkarni1  Gaël Chételat1  Salma Bougacha2  Brigitte Landeau3  Clément M. Garin3  Marc Dhenain4  Jean-Luc Picq4 
[1] Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, F-92265 Fontenay-aux-Roses, France;UNICAEN, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie University, 14000 Caen, France;Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, 18 Route du Panorama, F-92265 Fontenay-aux-Roses, France;Inserm, Inserm UMR-S U1237, Normandie University, UNICAEN, GIP Cyceron, Caen, France;
关键词: Brain function;    Cerebral networks;    Functional MRI;    Hubs;    Microcebus murinus;    Mouse lemur atlas;   
DOI  :  
来源: DOAJ
【 摘 要 】

Measures of resting-state functional connectivity allow the description of neuronal networks in humans and provide a window on brain function in normal and pathological conditions. Characterizing neuronal networks in animals is complementary to studies in humans to understand how evolution has modelled network architecture. The mouse lemur (Microcebus murinus) is one of the smallest and more phylogenetically distant primates as compared to humans. Characterizing the functional organization of its brain is critical for scientists studying this primate as well as to add a link for comparative animal studies. Here, we created the first functional atlas of mouse lemur brain and describe for the first time its cerebral networks. They were classified as two primary cortical networks (somato-motor and visual), two high-level cortical networks (fronto-parietal and fronto-temporal) and two limbic networks (sensory-limbic and evaluative-limbic). Comparison of mouse lemur and human networks revealed similarities between mouse lemur high-level cortical networks and human networks as the dorsal attentional (DAN), executive control (ECN), and default-mode networks (DMN). These networks were however not homologous, possibly reflecting differential organization of high-level networks. Finally, cerebral hubs were evaluated. They were grouped along an antero-posterior axis in lemurs while they were split into parietal and frontal clusters in humans.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次