期刊论文详细信息
Frontiers in Oncology
Assessment of Primary Colorectal Cancer CT Radiomics to Predict Metachronous Liver Metastasis
Jing Gong1  Menglei Li1  Xigang Shen1  Huan Zhang1  Yue Li1  Tong Tong1  Feng Feng2 
[1] Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China;Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, China;Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China;
关键词: tomography;    x-ray computed;    colorectal neoplasms;    neoplasm metastasis;    liver neoplasms;    machine learning;   
DOI  :  10.3389/fonc.2022.861892
来源: DOAJ
【 摘 要 】

ObjectivesTo establish and validate a machine learning-based CT radiomics model to predict metachronous liver metastasis (MLM) in patients with colorectal cancer.MethodsIn total, 323 patients were retrospectively recruited from two independent institutions to develop and evaluate the CT radiomics model. Then, 1288 radiomics features were extracted to decode the imaging phenotypes of colorectal cancer on CT images. The optimal radiomics features were selected using a recursive feature elimination selector configured by a support vector machine. To reduce the bias caused by an unbalanced dataset, the synthetic minority oversampling technique was applied to resample the minority samples in the datasets. Then, both radiomics and clinical features were used to train the multilayer perceptron classifier to develop two classification models. Finally, a score-level fusion model was developed to further improve the model performance.ResultsThe area under the curve (AUC) was 0.78 ± 0.07 for the tumour feature model and 0.79 ± 0.08 for the clinical feature model. The fusion model achieved the best performance, with AUCs of 0.79 ± 0.08 and 0.72 ± 0.07 in the internal and external validation cohorts.ConclusionsRadiomics models based on baseline colorectal contrast-enhanced CT have high potential for MLM prediction. The fusion model combining radiomics and clinical features can provide valuable biomarkers to identify patients with a high risk of colorectal liver metastases.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次