BMC Genomics | |
IL-17 signalling restructures the nasal microbiome and drives dynamic changes following Streptococcus pneumoniae colonization | |
Neil D. Ritchie1  Tom J. Evans1  Umer Z. Ijaz2  | |
[1] Institute of Infection, Immunity and Inflammation, University of Glasgow;School of Engineering, University of Glasgow; | |
关键词: Innate immunity; inflammation; microbiome; nasopharynx; Streptococcus pneumoniae; | |
DOI : 10.1186/s12864-017-4215-3 | |
来源: DOAJ |
【 摘 要 】
Abstract Background The bacterial pathogen Streptococcus pneumoniae colonizes the nasopharynx prior to causing disease, necessitating successful competition with the resident microflora. Cytokines of the IL-17 family are important in host defence against this pathogen but their effect on the nasopharyngeal microbiome is unknown. Here we analyse the influence of IL-17 on the composition and interactions of the nasopharyngeal microbiome before and after pneumococcal colonization. Results Using a murine model and 16S rRNA profiling, we found that a lack of IL-17 signalling led to profound alterations in the nasal but not lung microbiome characterized by decreased diversity and richness, increases in Proteobacteria and reduction in Bacteroidetes, Actinobacteria and Acidobacteria. Following experimental pneumococcal nasal inoculation, animals lacking IL-17 family signalling showed increased pneumococcal colonization, though both wild type and knockout animals showed as significant disruption of nasal microbiome composition, with increases in the proportion of Proteobacteria, even in animals that did not have persistent colonization. Sparse correlation analysis of the composition of the microbiome at various time points after infection showed strong positive interactions within the Firmicutes and Proteobacteria, but strong antagonism between members of these two phyla. Conclusions These results show the powerful influence of IL-17 signalling on the composition of the nasal microbiome before and after pneumococcal colonization, and apparent lack of interspecific competition between pneumococci and other Firmicutes. IL-17 driven changes in nasal microbiome composition may thus be an important factor in successful resistance to pneumococcal colonization and potentially could be manipulated to augment host defence against this pathogen.
【 授权许可】
Unknown