期刊论文详细信息
ISPRS International Journal of Geo-Information
Dynamic Wildfire Navigation System
Paul Fox-Hughes1  Jagannath Aryal2  Mitsuhiro Ozaki2 
[1] Bureau of Meteorology, GPO Box 727, Hobart, Tasmania 7000, Australia;Geography and Spatial Sciences, University of Tasmania, Private Bag 76, Hobart, Tasmania 7001, Australia;
关键词: GIS;    FDI;    wildfire;    PostGIS;    GeoDjango;   
DOI  :  10.3390/ijgi8040194
来源: DOAJ
【 摘 要 】

Wildfire, a natural part of many ecosystems, has also resulted in significant disasters impacting ecology and human life in Australia. This study proposes a prototype of fire propagation prediction as an extension of preceding research; this system is called “Cloud computing based bushfire prediction„, the computational performance of which is expected to be about twice that of the traditional client-server (CS) model. As the first step in the modelling approach, this prototype focuses on the prediction of fire propagation. The direction of fire is limited in regular grid approaches, such as cellular automata, due to the shape of the uniformed grid, while irregular grids are freed from this constraint. In this prototype, fire propagation is computed from a centroid regardless of grid shape to remove the above constraint. Additionally, the prototype employs existing fire indices, including the Grassland Fire Danger Index (GFDI), Forest Fire Danger Index (FFDI) and Button Grass Moorland Fire Index (BGML). A number of parameters, such as Digital Elevation Model (DEM) and forecast weather data, are prepared for use in the calculation of the indices above. The fire study area is located around Lake Mackenzie in the central north of Tasmania where a fire burnt approximately 247.11 km 2 in January 2016. The prototype produces nine different prediction results with three polygon configurations, including Delaunay Triangulation, Square and Voronoi, using three different resolutions: fine, medium and coarse. The Delaunay Triangulation, which has the greatest number of adjacent grids among three shapes of polygon, shows the shortest elapsed time for spread of fire compared to other shapes. The medium grid performs the best trade-off between cost and time among the three grain sizes of prediction polygons, and the coarse size shows the best cost-effectiveness. A staging approach where coarse size prediction is released initially, followed by a medium size one, can be a pragmatic solution for the purpose of providing timely evacuation guidance.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次