期刊论文详细信息
Epigenetics & Chromatin
Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance
Albert J. Erives1 
[1] Department of Biology, University of Iowa;
关键词: Chromatin;    Origin of eukaryotic chromatin;    Core histones;    Nucleosomes;    DNA topoisomerase II;    Eukaryotic replisome;   
DOI  :  10.1186/s13072-017-0162-0
来源: DOAJ
【 摘 要 】

Abstract Background While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like “doublets” in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Results Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. Conclusions The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of the four core histone clades. We thus suggest MV histone doublet genes and their DNA topo II gene possibly were acquired from an organism with a chromatinized replisome that diverged prior to the origin of eukaryotic core histone variants for H2/H2A.Z and H3/cenH3. These results also imply that core histones were utilized ancestrally in viral DNA compaction and/or protection from host endonucleases.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次