BMC Bioinformatics | |
De novo identification of maximally deregulated subnetworks based on multi-omics data with DeRegNet | |
Sebastian Winkler1  Mirjam Figaschewski1  Thorsten Tiede1  Oliver Kohlbacher1  Alfred Nordheim2  Ivana Winkler3  | |
[1] Applied Bioinformatics, Department of Computer Science, University of Tuebingen;Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen;International Max Planck Research School (IMPRS) “From Molecules to Organism”; | |
关键词: Biomolecular networks; Fractional integer programming; De-novo subnetwork enrichment; Functional enrichment; Omics data; | |
DOI : 10.1186/s12859-022-04670-6 | |
来源: DOAJ |
【 摘 要 】
Abstract Background With a growing amount of (multi-)omics data being available, the extraction of knowledge from these datasets is still a difficult problem. Classical enrichment-style analyses require predefined pathways or gene sets that are tested for significant deregulation to assess whether the pathway is functionally involved in the biological process under study. De novo identification of these pathways can reduce the bias inherent in predefined pathways or gene sets. At the same time, the definition and efficient identification of these pathways de novo from large biological networks is a challenging problem. Results We present a novel algorithm, DeRegNet, for the identification of maximally deregulated subnetworks on directed graphs based on deregulation scores derived from (multi-)omics data. DeRegNet can be interpreted as maximum likelihood estimation given a certain probabilistic model for de-novo subgraph identification. We use fractional integer programming to solve the resulting combinatorial optimization problem. We can show that the approach outperforms related algorithms on simulated data with known ground truths. On a publicly available liver cancer dataset we can show that DeRegNet can identify biologically meaningful subgraphs suitable for patient stratification. DeRegNet can also be used to find explicitly multi-omics subgraphs which we demonstrate by presenting subgraphs with consistent methylation-transcription patterns. DeRegNet is freely available as open-source software. Conclusion The proposed algorithmic framework and its available implementation can serve as a valuable heuristic hypothesis generation tool contextualizing omics data within biomolecular networks.
【 授权许可】
Unknown