期刊论文详细信息
Scientia Agricola
Crop area estimate from original and simulated spatial resolution data and landscape metrics Estimativa de área agrícola com dados de resolução espacial original e simulada e métricas de paisagem
关键词: MODIS;    sensoriamento remoto;    regressão;    soja;    cana-de-açúcar;    MODIS;    remote sensing;    regression;    soybean;    sugarcane;   
DOI  :  10.1590/S0103-90162008000500003
来源: DOAJ
【 摘 要 】

Images acquired at the same day by the ETM+/Landsat-7 (30 m of spatial resolution) and MODIS/Terra (250 m) sensors were used to estimate areas of three major crops (soybean, sugarcane, and corn) with different landscape patterns in Southeastern Brazil. Majority filtering of ETM + classification results was applied to describe the behavior of 15 selected landscape metrics at distinct simulated spatial resolutions (90, 150, 210 and 270 m). By using regression models, the performance of MODIS and derived metrics to predict adequately the crop area, considering ETM+ data as reference, were analyzed. Results showed that the MODIS instrument overestimated the areas of soybean (15%) and sugarcane (1%), and underestimated the area of corn (12%). Multiple regression results indicated that coarse spatial resolution sensors can be used to predict adequately the area viewed by the 30 m spatial resolution instruments only for crops with low fragmentation pattern such as soybean. These sensors cannot be used to predict the area of corn due to aggregation pixel effects of the less fragmented crops (soybean and sugarcane) over the most fragmented one (corn), as demonstrated by the spatial resolution simulation using majority filtering of the ETM+ image. Landscape metrics improved MODIS area estimates only for sugarcane, as indicated by higher values of R² for multiple than for simple regression. Only a small set of metrics was select to compose the multiple regression models because most of them were not preserved across different spatial resolutions (30 m and 250 m).
Imagens coletadas no mesmo dia pelos sensores ETM+/Landsat-7 (30 m de resolução espacial) e MODIS/Terra (250 m) foram utilizadas para estimar a área de três importantes culturas agrícolas (soja, cana-de-açúcar e milho) com diferentes padrões de paisagem no Sudeste Brasileiro. Filtragem de Maioria dos resultados da classificação da imagem ETM+ foi aplicada para descrever o comportamento de 15 métricas em diferentes simulações de resolução espacial (90, 150, 210 e 270 m). Utilizando modelos de regressão, o desempenho do MODIS e de suas métricas para predizer a área das culturas, considerando os dados ETM+ como referência, foi analisado. Os resultados mostraram que o sensor MODIS superestimou as áreas de soja (15%) e cana-de-açúcar (1%) e subestimou a área de milho (12%). A regressão múltipla indicou que sensores de resolução espacial grosseira podem ser usados para predizer adequadamente a área vista por instrumentos com 30 m de resolução espacial apenas para culturas com baixo padrão de fragmentação como soja. Estes sensores não podem predizer adequadamente a área de milho devido aos efeitos de agregação de pixels das culturas menos fragmentadas (soja e cana-de-açúcar) sobre a mais fragmentada (milho), conforme demonstrado pela simulação da resolução espacial por filtragem de maioria da imagem ETM+. As métricas da paisagem melhoraram as estimativas de área com o MODIS apenas para a cana-de-açúcar, conforme indicado por maiores valores de R² observados para regressão múltipla do que para regressão simples. Apenas um número pequeno de métricas foi selecionado para compor os modelos de regressão visto que a maior parte delas não foi preservada entre resoluções espaciais diferentes (30 e 250 m).

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:8次