期刊论文详细信息
Frontiers in Neuroscience
Fitting neuron models to spike trains
Dan F. M Goodman1  Bertrand eFontaine1  Romain eBrette1  Cyrille eRossant1  Anna K Magnusson4  Jonathan ePlatkiewicz5 
[1] CNRS;Ecole Normale Supérieure;Karolinska Institutet;Karolinska University Hospital;UPMC Univ Paris 6;
关键词: simulation;    optimization;    brian;    gpu;    model fitting;    Parallel Computing;   
DOI  :  10.3389/fnins.2011.00009
来源: DOAJ
【 摘 要 】

Computational modeling is increasingly used to understand the function of neural circuitsin systems neuroscience.These studies require models of individual neurons with realisticinput-output properties.Recently, it was found that spiking models can accurately predict theprecisely timed spike trains produced by cortical neurons in response tosomatically injected currents,if properly fitted. This requires fitting techniques that are efficientand flexible enough to easily test different candidate models.We present a generic solution, based on the Brian simulator(a neural network simulator in Python), which allowsthe user to define and fit arbitrary neuron models to electrophysiological recordings.It relies on vectorization and parallel computing techniques toachieve efficiency.We demonstrate its use on neural recordings in the barrel cortex andin the auditory brainstem, and confirm that simple adaptive spiking modelscan accurately predict the response of cortical neurons. Finally, we show how a complexmulticompartmental model can be reduced to a simple effective spiking model.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次