期刊论文详细信息
Sensors
Attitude Angle Compensation for a Synchronous Acquisition Method Based on an MEMS Sensor
Weigong Zhang1  Jing Wang1  Ying Wang1  Yixiao Liu2  Jiqin Zhou2  Huanhuan Tian2 
[1] Beijing Advanced Innovation Center for Image Theory and Technology, Capital Normal University, Beijing 100048, China;College of Information Engineering, Capital Normal University, Beijing 100048, China;
关键词: Quartz Vibrating Beam Accelerometer;    attitude angle compensation;    strapdown inertial navigation system;    improved equal-precision frequency measurement;    FPU;   
DOI  :  10.3390/s19030483
来源: DOAJ
【 摘 要 】

As a new type of micro-electro-mechanical systems (MEMS) inertial sensor, the Quartz Vibrating Beam Accelerometer (QVBA) is widely used in intelligent sweeping robots, small aircraft, navigation systems, etc. For these applications, correcting and compensating the attitude angle with the result of acceleration plays an important role to improve the measurement accuracy. The synchronization error between the measurement of the accelerometer and gyroscope attitude angle has an adverse impact on the accuracy of the attitude angle. In this paper, a synchronous acquisition scheme of the accelerometer and gyroscope attitude angle in a strapdown inertial navigation system (SINS) is proposed. At the same time, to improve the sampling accuracy and the conversion speed of QVBA, an improved equal-precision frequency measuring method is also implemented in this paper. The hardware float point unit (FPU) is used to accelerate the calculation of the frequency measurement value. The long-term cumulative error of the frequency measurement value is less than 10 4 . The calculation process time from sampling to attitude angle compensation calculation is reduced by 40.8%. This work has played a very good role in improving the measurement accuracy and speed of the SINS.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次