Micromachines | |
Design of Rigidity and Breaking Strain for a Kirigami Structure with Non-Uniform Deformed Regions | |
Hiroki Taniyama1  Eiji Iwase1  | |
[1] Department of Applied Mechanics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; | |
关键词: flexible device; stretchable electronic substrate; kirigami structure; mechanical metamaterials; | |
DOI : 10.3390/mi10060395 | |
来源: DOAJ |
【 摘 要 】
We modeled a kirigami structure by considering the influence of non-uniform deforming cuts in order to theoretically design the mechanical characteristics of the structure. It is known that the end regions of kirigami structures are non-uniformly deformed when stretched, because the deformation is inhibited at the regions close to both the ends connected to the uncut region in the longitudinal direction. The non-uniform deformation affects the overall mechanical characteristics of the structure. Our model was intended to elucidate how cuts at both ends influence these characteristics. We focused on the difference in the deformation degree caused by a cut between the regions close to the ends and the center of the stretched kirigami device. We proposed a model comprising of connected springs in series with different rigidities in the regions close to the ends and the center. The spring model showed good prediction tendency with regard to the curve of the stress–strain diagram obtained using the tensile test with a test piece. Therefore, the results show that it is possible to theoretically design the mechanical characteristics of a kirigami structure, and that such a design can well predict the influence of cuts, which induce non-uniform deformation at both ends.
【 授权许可】
Unknown