期刊论文详细信息
Atmosphere
Comparisons of Combined Oxidant Capacity and Redox-Weighted Oxidant Capacity in Their Association with Increasing Levels of COVID-19 Infection
Kaixing Yao1  Liu Yang1  Shiyu Cheng1  Huibin Guo1  Yidan Wang1 
[1] Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China;
关键词: oxidants;    COVID-19;    air pollution;    GAM;    ozone;    nitrogen dioxide;   
DOI  :  10.3390/atmos13040569
来源: DOAJ
【 摘 要 】

Background: Ozone (O3) and nitrogen dioxide (NO2) are substances with oxidizing ability in the atmosphere. Only considering the impact of a single substance is not comprehensive. However, people’s understanding of “total oxidation capacity” (Ox) and “weighted average oxidation” (Oxwt) is limited. Objectives: This investigation aims to assess the impact of Ox and Oxwt on the novel coronavirus disease (COVID-19). We also compared the relationship between the different calculation methods of Ox and Oxwt and the COVID-19 infection rate. Method: We recorded confirmed COVID-19 cases and daily pollutant concentrations (O3 and NO2) in 34 provincial capital cities in China. The generalized additive model (GAM) was used to analyze the nonlinear relationship between confirmed COVID-19 cases and Ox and Oxwt. Result: Our results indicated that the correlation between Ox and COVID-19 was more sensitive than Oxwt. The hysteresis effect of Ox and Oxwt decreased with time. The most obvious statistical data was observed in Central China and South China. A 10 µg m−3 increase in mean Ox concentrations were related to a 23.1% (95%CI: 11.4%, 36.2%) increase, and a 10 µg m−3 increase in average Oxwt concentration was related to 10.7% (95%CI: 5.2%, 16.8%) increase in COVID-19. In conclusion, our research results show that Ox and Oxwt can better replace the single pollutant research on O3 and NO2, which is used as a new idea for future epidemiological research.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:4次