期刊论文详细信息
Sensors
Hydrogen Sensing Using Paper Sensors with Pencil Marks Decorated with Palladium
NamHee Lee1  Un-Bong Baek2  Seung-Hoon Nahm2 
[1] Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea;Energy Materials Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea;
关键词: hydrogen;    H2 sensing;    paper-based sensor;    pencil marks;    palladium;    chemiresistor;   
DOI  :  10.3390/s19143050
来源: DOAJ
【 摘 要 】

Paper-based sensors fabricated using the pencil-on-paper method are expected to find wide usage in many fields owing to their low cost and high reproducibility. Here, hydrogen (H2) detection was realized by applying palladium (Pd) nanoparticles (NPs) to electronic circuits printed on paper using a metal mask and a pencil. We confirmed that multilayered graphene was produced by the pencil, and then characterized Pd NPs were added to the pencil marks. To evaluate the gas-sensing ability of the sensor, its sensitivities and reaction rates in the presence and absence of H2 were measured. In addition, sensing tests performed over a wide range of H2 concentrations confirmed that the sensor had a detection limit as low as 1 ppm. Furthermore, the sensor reacted within approximately 50 s at all H2 concentrations tested. The recovery time of the sensor was 32 s at 1 ppm and 78 s at 1000 ppm. Sensing tests were also performed using Pd NPs of different sizes to elucidate the relationship between the sensing rate and catalyst size. The experimental results confirmed the possibility of fabricating paper-based gas sensors with a superior sensing capability and response rate.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次