Pharmaceuticals | |
Locking up the AS1411 Aptamer with a Flanking Duplex: Towards an Improved Nucleolin-Targeting | |
Tiago Santos1  Carla Cruz1  André Miranda1  Eric Largy2  | |
[1] CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle, Université de Bordeaux, INSERM & CNRS, (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607 Pessac, France; | |
关键词: AS1411 derivative; G-quadruplex; DNA aptamers; biophysical characterization; | |
DOI : 10.3390/ph14020121 | |
来源: DOAJ |
【 摘 要 】
We have designed AS1411-N6, a derivative of the nucleolin (NCL)-binding aptamer AS1411, by adding six nucleotides to the 5′-end that are complementary to nucleotides at the 3′-end forcing it into a stem-loop structure. We evaluated by several biophysical techniques if AS1411-N6 can adopt one or more conformations, one of which allows NCL binding. We found a decrease of polymorphism of G-quadruplex (G4)-forming sequences comparing to AS1411 and the G4 formation in presence of K+ promotes the duplex folding. We also studied the binding properties of ligands TMPyP4, PhenDC3, PDS, 360A, and BRACO-19 in terms of stability, binding, topology maintenance of AS1411-N6, and NCL recognition. The melting experiments revealed promising stabilizer effects of PhenDC3, 360A, and TMPyP4, and the affinity calculations showed that 360A is the most prominent affinity ligand for AS1411-N6 and AS1411. The affinity determined between AS1411-N6 and NCL denoting a strong interaction and complex formation was assessed by PAGE in which the electrophoretic profile of AS1411-N6 showed bands of the dimeric form in the presence of the ligands and NCL.
【 授权许可】
Unknown