Cellular Physiology and Biochemistry | |
GSK-3β and Vitamin D Receptor are Involved in β-Catenin and Snail Signaling in High Glucose-Induced Epithelial-Mesenchymal Transition of Mouse Podocytes | |
关键词: Podocytes; Epithelial-mesenchymal transition; Glycogen synthase kinase 3β; β-catenin; Snail; Diabetic nephropathy; | |
DOI : 10.1159/000358678 | |
来源: DOAJ |
【 摘 要 】
Background: Epithelial-mesenchymal transition (EMT) is recognized to play an important role in diabetic nephropathy (DN). Objective: To analyze the roles of glycogen synthase kinase 3β (GSK-3β), β-catenin and Snail signaling in high glucose (HG)-induced mouse podocytes EMT. Methods: Differentiated podocytes were divided into: the normal glucose group (NG: glucose 5.6mM), the HG groups (12.5HG: 12.5mM; 25HG: 25mM; and 50HG: 50mM of glucose), and the osmotic control group (NG+M: glucose 5.6mM and mannitol 44.4mM). GSK-3β, β-catenin and Snail were assessed using semi-quantitative RT-PCR, western blot and immunofluorescence. β-catenin and Snail pathways were assessed after down-regulating GSK-3β expression using an inhibitor (LiCl) or a small-interfering RNA (siRNA). Results: HG increased GSK-3β, β-catenin and Snail expressions, and promoted EMT, as shown by decreased nephrin expression (epithelial marker), and increased α-SMA expression (mesenchymal marker). GSK-3β inhibitor and GSK-3β siRNA decreased β-catenin and Snail expressions, and reversed HG-induced EMT. Immunofluorescence showed that GSK-3β and β-catenin did not completely overlap; β-catenin was transferred to the nucleus in the 25HG group. VDR seems to be involved in HG-induced β-catenin nuclear translocation. Conclusion: Down-regulating GSK-3β expression decreased β-catenin and Snail expression and reversed HG-induced podocytes EMT. Thus, modulating GSK-3β might be a target to slow or prevent DN.
【 授权许可】
Unknown