| EAI Endorsed Transactions on Scalable Information Systems | |
| Performance Comparison of Convolutional andMulticlass Neural Network for Learning Style Detectionfrom Facial Images | |
| F.L. Gambo1  A.A. Abdullahi1  G.M. Wajiga2  E.J. Garba2  D.B. Bisandu3  L. Shuib4  | |
| [1] Department of Computer Science, Federal University Dutse, Jigawa, Nigeria;Department of Computer Science, Moddibo, Adama University of Technology, Yola, Adamawa, Nigeria;Department of Computer Science, University of Jos, Nigeria;Department of Information Systems, Faculty of Computer Science and Information Technology, Universiti Malaya, Malaysia; | |
| 关键词: learning style; artificial neural network; facial images; vark learning-style model; deep learning; | |
| DOI : 10.4108/eai.20-10-2021.171549 | |
| 来源: DOAJ | |
【 摘 要 】
Improvingtheaccuracyoflearningstyledetectionmodelsisaprimaryconcernintheareaofautomaticdetectionof learningstyle,whichcanbeachievedeitherthrough,attribute/featureselectionorclassificationalgorithm.However, the roleoffacialexpressioninimprovingaccuracyhasnotbeenfullyexploredintheresearchdomain.Ontheotherhand, deep learning solutions have become a new approach for solving complex problems using Deep Neural networks (DNNs); theseDNNshavedeeparchitecturesthatarecapableofdecomposingproblemsintomultipleprocessinglayers,enabling and devising multiple mapping of complex problems functions. In this paper, we investigate and compare the performance ofConvolutionalNeuralNetwork(CNN)andMultiClassNeuralNetwork(MCNN)forclassificationoflearnersinto VARK learning-style dimensions (i.e Visual, Aural, Reading Kinaesthetic, including Neutral class) based on facial images. TheperformancesofthetwonetworkswereevaluatedandcomparedusingsquaremeanerrorMSEfortrainingand accuracymetricfortesting.TheresultsshowthatMCNNoffersbetterandrobustclassificationperformanceofVARK learningstylebasedonfacialimages.Finally,thispaperhasdemonstratedapotentialofanewmethodforautomatic classificationofVARKLSbasedonFacialExpressions(FEs).Basedontheexperimentalresultsofthemodels, thisapproachcanbenefitbothresearchersandusersofadaptivee-learningsystemstouncoverthepotentialofusingFEsas identifier learning styles for recommendations and personalization of learning environments.
【 授权许可】
Unknown