期刊论文详细信息
EAI Endorsed Transactions on Scalable Information Systems
Performance Comparison of Convolutional andMulticlass Neural Network for Learning Style Detectionfrom Facial Images
F.L. Gambo1  A.A. Abdullahi1  G.M. Wajiga2  E.J. Garba2  D.B. Bisandu3  L. Shuib4 
[1] Department of Computer Science, Federal University Dutse, Jigawa, Nigeria;Department of Computer Science, Moddibo, Adama University of Technology, Yola, Adamawa, Nigeria;Department of Computer Science, University of Jos, Nigeria;Department of Information Systems, Faculty of Computer Science and Information Technology, Universiti Malaya, Malaysia;
关键词: learning style;    artificial neural network;    facial images;    vark learning-style model;    deep learning;   
DOI  :  10.4108/eai.20-10-2021.171549
来源: DOAJ
【 摘 要 】

Improvingtheaccuracyoflearningstyledetectionmodelsisaprimaryconcernintheareaofautomaticdetectionof learningstyle,whichcanbeachievedeitherthrough,attribute/featureselectionorclassificationalgorithm.However, the roleoffacialexpressioninimprovingaccuracyhasnotbeenfullyexploredintheresearchdomain.Ontheotherhand, deep learning solutions have become a new approach for solving complex problems using Deep Neural networks (DNNs); theseDNNshavedeeparchitecturesthatarecapableofdecomposingproblemsintomultipleprocessinglayers,enabling and devising multiple mapping of complex problems functions. In this paper, we investigate and compare the performance ofConvolutionalNeuralNetwork(CNN)andMultiClassNeuralNetwork(MCNN)forclassificationoflearnersinto VARK learning-style dimensions (i.e Visual, Aural, Reading Kinaesthetic, including Neutral class) based on facial images. TheperformancesofthetwonetworkswereevaluatedandcomparedusingsquaremeanerrorMSEfortrainingand accuracymetricfortesting.TheresultsshowthatMCNNoffersbetterandrobustclassificationperformanceofVARK learningstylebasedonfacialimages.Finally,thispaperhasdemonstratedapotentialofanewmethodforautomatic classificationofVARKLSbasedonFacialExpressions(FEs).Basedontheexperimentalresultsofthemodels, thisapproachcanbenefitbothresearchersandusersofadaptivee-learningsystemstouncoverthepotentialofusingFEsas identifier learning styles for recommendations and personalization of learning environments.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次