| Life | |
| Racemate Resolution of Alanine and Leucine on Homochiral Quartz, and Its Alteration by Strong Radiation Damage | |
| Friedrich Finger1  Ewald Hejl2  Adrien D. Garcia3  Uwe J. Meierhenrich3  Cornelia Meinert3  | |
| [1] Fachbereich Chemie und Physik der Materialien, Universität Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria;Fachbereich für Geographie und Geologie, Universität Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria;Institut de Chimie de Nice, Université Côte d’Azur, CNRS, UMR 7272, 06108 Nice, France; | |
| 关键词: chirogenesis; quartz; amino acids; radiation damage; origin-of-life; GC×GC-TOFMS; | |
| DOI : 10.3390/life11111222 | |
| 来源: DOAJ | |
【 摘 要 】
Homochiral proteins orchestrate biological functions throughout all domains of life, but the origin of the uniform l-stereochemistry of amino acids remains unknown. Here, we describe enantioselective adsorption experiments of racemic alanine and leucine onto homochiral d- and l-quartz as a possible mechanism for the abiotic emergence of biological homochirality. Substantial racemate resolution with enantiomeric excesses of up to 55% are demonstrated to potentially occur in interstitial pores, along grain boundaries or small fractures in local quartz-bearing environments. Our previous hypothesis on the enhanced enantioselectivity due to uranium-induced fission tracks could not be validated. Such capillary tubes in the near-surface structure of quartz have been proposed to increase the overall chromatographic separation of enantiomers, but no systematic positive correlation of accumulated radiation damage and enantioselective adsorption was observed in this study. In general, the natural l-quartz showed stronger enantioselective adsorption affinities than synthetic d-quartz without any significant trend in amino acid selectivity. Moreover, the l-enantiomer of both investigated amino acids alanine and leucine was preferably adsorbed regardless of the handedness of the enantiomorphic quartz sand. This lack of mirror symmetry breaking is probably due to the different crystal habitus of the synthetic z-bar of d-quartz and the natural mountain crystals of l-quartz used in our experiments.
【 授权许可】
Unknown