期刊论文详细信息
Molecules
Evaluation of Chemical Composition of Two Linseed Varieties as Sources of Health-Beneficial Substances
Luca Incrocci1  Giuseppe Conte1  Lara Foschi1  Silvia Tavarini1  Antonella Castagna1  Chiara Sanmartin1  Andrea Serra1  Annamaria Ranieri1  LucianaG. Angelini1 
[1] Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy;
关键词: flaxseed;    oil;    fatty acids;    phenols;    carotenoids;    tocopherols;    tocotrienols;    seed yield;   
DOI  :  10.3390/molecules24203729
来源: DOAJ
【 摘 要 】

Linseed (Linum usitatissimum L.) is becoming more and more important in the health food market as a functional food, since its seeds and oil represent a rich source of bioactive compounds. Its chemical composition is strongly correlated with, and dependent on, genetic characteristics. The aim of this study was to evaluate the variation in seed yield, oil content, fatty acid composition and secondary metabolite profiles between a low-linolenic linseed variety, belonging to the Solin-type group (Solal), and a high-linolenic traditional one (Bethune), cultivated, both as spring crops, in open field conditions of Central Italy. The achieved results pointed out the different behavior of the two varieties in terms of growth cycle, oil content, and some important yield components, such as capsule number per plant and thousand seed weight. There were also significant differences in seed composition regarding total phenols, total flavonoids, antioxidant activities as well as in carotenoid, tocopherol, and tocotrienol profiles between the two varieties. In particular, Solal was characterized by the greatest contents of oil, phenols, flavonoids, α- and δ- tocotrienol, together with the highest antioxidant activity. Bethune, on the contrary, showed the highest amounts of carotenoids (lutein and β-carotene). These results indicate a clear effect of the genetic characteristics on the biosynthesis of these secondary metabolites and, consequently, on the related antioxidant activity. Our findings suggest that the mutation process, responsible for the selection of the low-linolenic cultivar, is able to modify the biosynthetic pathways of carotenoids and phenolics.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:4次