期刊论文详细信息
ChemistryOpen
Investigation of Water‐Soluble Binders for LiNi0.5Mn1.5O4‐Based Full Cells
Dr. Girish D. Salian1  Assoc. Prof. Dr. Reza Younesi1  Yonas Tesfamhret1  Dr. Guiomar Hernández1  Dr. Christian Fink Elkjær2  Dr. Jonathan Højberg2  Dr. Matthew J. Lacey3 
[1] Department of Chemistry-Ångström Laboratory Uppsala University Box 538 75121 Uppsala Sweden;Haldor Topsøe A/S Haldor Topsøes Allé 1 2800 Kgs Lyngby Denmark;Scania CV AB 151 87 Södertälje Sweden;
关键词: aqueous binders;    lithium nickel manganese oxide;    lithium titanate;    Li-ion;   
DOI  :  10.1002/open.202200065
来源: DOAJ
【 摘 要 】

Abstract Two water‐soluble binders of carboxymethyl cellulose (CMC) and sodium alginate (SA) have been studied in comparison with N‐methylpyrrolidone‐soluble poly(vinylidene difluoride–co‐hexafluoropropylene) (PVdF‐HFP) to understand their effect on the electrochemical performance of a high‐voltage lithium nickel manganese oxide (LNMO) cathode. The electrochemical performance has been investigated in full cells using a Li4Ti5O12 (LTO) anode. At room temperature, LNMO cathodes prepared with aqueous binders provided a similar electrochemical performance as those prepared with PVdF‐HFP. However, at 55 °C, the full cells containing LNMO with the aqueous binders showed higher cycling stability. The results are supported by intermittent current interruption resistance measurements, wherein the electrodes with SA showed lower resistance. The surface layer formed on the electrodes after cycling has been characterized by X‐ray photoelectron spectroscopy. The amount of transition metal dissolutions was comparable for all three cells. However, the amount of hydrogen fluoride (HF) content in the electrolyte cycled at 55 °C is lower in the cell with the SA binder. These results suggest that use of water‐soluble binders could provide a practical and more sustainable alternative to PVdF‐based binders for the fabrication of LNMO electrodes.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次