Genome Biology | |
LINE retrotransposons characterize mammalian tissue-specific and evolutionarily dynamic regulatory regions | |
Louise Harewood1  Duncan T. Odom1  Diego Villar1  Aisling M. Redmond1  Osagie Izuogu2  Paul Flicek2  Raghavendra Ramachanderan2  Maša Roller2  Ericca Stamper2  Fergal Martin2  | |
[1] Cancer Research UK Cambridge Institute, University of Cambridge;European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus; | |
关键词: Regulatory evolution; Gene regulation; Promoters; Enhancers; Transposable elements; Long Interspersed Nuclear Elements (LINEs); | |
DOI : 10.1186/s13059-021-02260-y | |
来源: DOAJ |
【 摘 要 】
Abstract Background To investigate the mechanisms driving regulatory evolution across tissues, we experimentally mapped promoters, enhancers, and gene expression in the liver, brain, muscle, and testis from ten diverse mammals. Results The regulatory landscape around genes included both tissue-shared and tissue-specific regulatory regions, where tissue-specific promoters and enhancers evolved most rapidly. Genomic regions switching between promoters and enhancers were more common across species, and less common across tissues within a single species. Long Interspersed Nuclear Elements (LINEs) played recurrent evolutionary roles: LINE L1s were associated with tissue-specific regulatory regions, whereas more ancient LINE L2s were associated with tissue-shared regulatory regions and with those switching between promoter and enhancer signatures across species. Conclusions Our analyses of the tissue-specificity and evolutionary stability among promoters and enhancers reveal how specific LINE families have helped shape the dynamic mammalian regulome.
【 授权许可】
Unknown