期刊论文详细信息
Animal Microbiome
Effect of copper sulfate on the external microbiota of adult common snook (Centropomus undecimalis)
Noah J. Levi1  Kevan Main2  Matthew Resley2  Andrea M. Tarnecki3 
[1] Biology Department, Wabash College;Directorate of Fisheries and Aquaculture, Mote Aquaculture Research Park;Marine Immunology Program, Mote Marine Laboratory;
关键词: Microbiota;    Common snook;    Aquaculture;    Copper sulfate;    External mucosa;    Recirculating aquaculture system;   
DOI  :  10.1186/s42523-021-00085-5
来源: DOAJ
【 摘 要 】

Abstract Background The environment exerts a strong influence on the fish external microbiota, with lower diversity and increased abundances of opportunistic bacterial groups characterizing cultured fish compared to their wild counterparts. Deviation from a healthy external microbiota structure has been associated with increased susceptibility to bacterial pathogens. Treatment of wild-caught broodstock with copper sulfate for the removal of external parasites is a common aquaculture practice. Despite the microbiota’s importance to fish health, the effects of copper sulfate on mucosal bacterial communities and their ability to recover following this chemical treatment have not been examined. The skin microbiota of adult common snook was characterized from wild individuals (Wild), and wild-caught fish maintained in recirculating aquaculture systems (RAS) immediately following a month-long copper sulfate treatment (Captive-1), and then two-weeks (Captive-2) and 2 years (Captive-3) after cessation of copper treatment. Results The skin microbiota of wild fish were characterized by high diversity and taxa including Synechocococcus, SAR11, and a member of the Roseobacter clade. Bacterial diversity decreased in Captive individuals during the 2-year sampling period. Captive fish harbored greater abundances of Firmicutes, which may reflect glycan differences between aquaculture and natural feeds. Bacterial taxa with copper resistance mechanisms and indicative of metal contamination were enriched in Captive-1 and Captive-2 fish. Vibrionaceae were dominant in Captive fish, particularly immediately and 2 weeks following copper treatment. Based on our observations and previous literature, our results suggest putatively beneficial taxa amass over time in captivity. Within 2 years, Captive individuals harbored Bacillus which contains numerous probiotic candidates and the complex carbon degraders of the family Saprospiraceae. Predicted butanoate metabolism exceeded that of Wild fish, and its reported roles in immunity and energy provision suggest a prebiotic effect for fishes. Conclusions The mucosal microbiota contains bacterial taxa that may act as bioindicators of environmental pollution. Increases in mutualistic groups indicate a return to a beneficial skin microbiota following copper sulfate treatment. Our data also suggests that vastly different taxa, influenced by environmental conditions, can be associated with adult fish without noticeable health impairment, perhaps due to establishment of various mutualists to maintain fish mucosal health.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:8次