期刊论文详细信息
Energies
Assessment of Organic Rankine Cycle Part-Load Performance as Gas Turbine Bottoming Cycle with Variable Area Nozzle Turbine Technology
Lars O. Nord1  Mohammad Ali Motamed1 
[1] Department of Energy and Process Engineering, Norwegian University of Science and Technology—NTNU, 7491 Trondheim, Norway;
关键词: process modelling and simulation;    off-design operation;    thermal efficiency;    offshore heat;    CO2 emission reduction;    control strategy;   
DOI  :  10.3390/en14237916
来源: DOAJ
【 摘 要 】

Power cycles on offshore oil and gas installations are expected to operate more at varied load conditions, especially when rapid growth in renewable energies puts them in a load-following operation. Part-load efficiency enhancement is advantageous since heat to power cycles suffer poor efficiency at part loads. The overall purpose of this article is to improve part-load efficiency in offshore combined cycles. Here, the organic Rankine bottoming cycle with a control strategy based on variable geometry turbine technology is studied to boost part-load efficiency. The Variable Area Nozzle turbine is selected to control cycle mass flow rate and pressure ratio independently. The design and performance of the proposed working strategy are assessed by an in-house developed tool. With the suggested solution, the part-load organic Rankine cycle efficiency is kept close to design value outperforming the other control strategies with sliding pressure, partial admission turbine, and throttling valve control operation. The combined cycle efficiency showed a clear improvement compared to the other strategies, resulting in 2.5 kilotons of annual carbon dioxide emission reduction per gas turbine unit. Compactness, autonomous operation, and acceptable technology readiness level for variable area nozzle turbines facilitate their application in offshore oil and gas installations.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次