期刊论文详细信息
AIMS Mathematics
>Let $ R $ be a ring with identity. The commuting graph of $ R $ is the graph associated to $ R $ whose vertices are non-central elements in $ R $, and distinct vertices $ A $ and $ B $ are adjacent if and only if $ AB = BA $. In this paper, we completely determine the automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $, where $ \mathbb{Z}_{p^{s}} $ is the ring of integers modulo $ p^{s} $, $ p $ is a prime and $ s $ is a positive integer.
Hengbin Zhang1 
[1] College of Mathematical Science, Yangzhou University, Yangzhou, Jiangsu 225009, China;
关键词: commuting graph;    automorphism group;    matrix ring;   
DOI  :  10.3934/math.2021729
来源: DOAJ
【 摘 要 】

Let $ R $ be a ring with identity. The commuting graph of $ R $ is the graph associated to $ R $ whose vertices are non-central elements in $ R $, and distinct vertices $ A $ and $ B $ are adjacent if and only if $ AB = BA $. In this paper, we completely determine the automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $, where $ \mathbb{Z}_{p^{s}} $ is the ring of integers modulo $ p^{s} $, $ p $ is a prime and $ s $ is a positive integer.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次