BMC Sports Science, Medicine and Rehabilitation | |
Investigation of cardiopulmonary exercise testing using a dynamic leg press and comparison with a cycle ergometer | |
Tobias Nef1  Farouk Chrif2  Kenneth J. Hunt2  | |
[1] Gerontechnology and Rehabilitation Research Group, ARTORG Center for Biomedical Engineering Research, University of Bern;Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences; | |
关键词: Cardiopulmonary exercise testing; Dynamic leg press; Cycle ergometer; Oxygen uptake; Heart rate; Ventilatory threshold; | |
DOI : 10.1186/s13102-018-0095-3 | |
来源: DOAJ |
【 摘 要 】
Abstract Background Leg-press machines are widely employed for musculoskeletal conditioning of the lower-limbs and they provide cardiovascular benefits for resistance training in cardiac patients. The aim of this study was to assess the feasibility of a dynamic leg press (DLP) for incremental cardiopulmonary exercise testing (CPET) and to compare the results with those obtained using a cycle ergometer (CE). Methods Twelve healthy participants aged 27±4 years (mean ± standard deviation) performed incremental cardiopulmonary exercise tests on a DLP and on a CE. To facilitate CPET, the DLP was augmented with force and angle sensors, a work rate estimation algorithm, and a visual feedback system. Gas exchange variables and heart rate were recorded breath-by-breath using a cardiopulmonary monitoring system. Results Peak oxygen uptake and peak heart rate were significantly lower for the DLP than for the CE: peak oxygen uptake was 3.2±0.5 vs. 4.1±0.5 L/min (DLP vs. CE, p=6.7×10−6); peak heart rate was 174±14 vs. 182±13 bpm (DLP vs. CE, p=0.0016). Likewise, the sub-maximal cardiopulmonary parameters, viz. the first and second ventilatory thresholds, and ramp duration were significantly lower for the DLP. Conclusions The dynamic leg press was found to be feasible for CPET: the approach was technically implementable and all peak and sub-maximal cardiopulmonary parameters were able to be identified. The lower outcome values observed with the DLP can be attributed to a peripheral factor, namely the earlier onset of muscular fatigue.
【 授权许可】
Unknown