期刊论文详细信息
IEEE Access
Fusing Ambient and Mobile Sensor Features Into a Behaviorome for Predicting Clinical Health Scores
Maureen Schmitter-Edgecombe1  Diane J. Cook2 
[1] Department of Psychology, Washington State University, Pullman, WA, USA;School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA;
关键词: Activity recognition;    behavior markers;    joint inference;    smart homes;    smartwatches;   
DOI  :  10.1109/ACCESS.2021.3076362
来源: DOAJ
【 摘 要 】

Advances in machine learning and low-cost, ubiquitous sensors offer a practical method for understanding the predictive relationship between behavior and health. In this study, we analyze this relationship by building a behaviorome, or set of digital behavior markers, from a fusion of data collected from ambient and wearable sensors. We then use the behaviorome to predict clinical scores for a sample of n = 21 participants based on continuous data collected from smart homes and smartwatches and automatically labeled with corresponding activity and location types. To further investigate the relationship between domains, including participant demographics, self-report and external observation-based health scores, and behavior markers, we propose a joint inference technique that improves predictive performance for these types of high-dimensional spaces. For our participant sample, we observe correlations ranging from small to large for the clinical scores. We also observe an improvement in predictive performance when multiple sensor modalities are used and when joint inference is employed.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次