HortScience | |
Variation in Boron Availability Alters Root Architecture Attributes at the Onset of Storage Root Formation in Three Sweetpotato Cultivars | |
关键词: anomalous cambium; boron; ipomoea batatas; lateral roots; root system architecture; | |
DOI : https://doi.org/10.21273/HORTSCI16134-21 | |
来源: DOAJ |
【 摘 要 】
The primary objective of this work was to generate species-specific information about root architectural adaptation to variation in boron (B) availability at the onset of storage root formation among three sweetpotato [Ipomoea batatas (L.) Lam] cultivars (Beauregard = BX; Murasaki = MU; Okinawa = OK). Three B levels were used: 0B (B was omitted in the nutrient solution, substrate B = 0.1 mg·kg−1), 1XB (sufficient B; 0.5 mg·kg−1), and 2XB (high B; 1 mg·kg−1). The check cultivar BX showed evidence of storage root formation at 15 days in 0B and 1XB, whereas cultivars MU and OK failed to show evidence of root swelling. The 1XB and 2XB levels were associated with 736% and 2269% increase in leaf tissue B in BX, respectively, relative to plants grown in 0B. Similar magnitudes of increase were observed in MU and OK cultivars. There were no differences in adventitious root (AR) count within cultivars but OK showed 25% fewer AR numbers relative to BX across all B levels. 0B was associated with 20% and 48% reduction in main root length in BX and OK, respectively, relative to plants grown in 1XB and 2XB. 2XB was associated with a 10% increase in main root length in MU relative to plants grown in 0B and 1XB. 0B was associated with reduced lateral root length in all cultivars but the magnitude of responses varied with cultivars. These data corroborate findings in model systems and well-studied crop species that B deficiency is associated with reduced root growth. These data can be used to further understand the role of cultivar-specific responses to variation in B availability in sweetpotato.
【 授权许可】
Unknown