期刊论文详细信息
Open Medicine
miR-150-5p affects AS plaque with ASMC proliferation and migration by STAT1
Tang Shuhong1  Yang Keqin1  Bian Yuan1  Lu Hongying1  Cai Wenqiang1  Tan Yan2 
[1] Department of Neurosurgery, Guigang City People’s Hospital, Guigang, 537100, China;Department of Neurosurgery, Guigang City People’s Hospital, No. 1, Zhongshan Middle Road, Guigang, 537100, China;
关键词: atherosclerosis;    mir-150-5p;    plaque stability;    collagen metabolism;    signal transducer and activator of transcription 1;   
DOI  :  10.1515/med-2021-0357
来源: DOAJ
【 摘 要 】

We explore miR‐150‐5p in atherosclerosis (AS). The AS model was constructed using Apo E−/− mice with an injection of the miR-150-5p mimic or an inhibitor. Pathological characteristics were assessed using Oil red O staining and Masson staining. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the expressions of microRNA-150-5p (miR-150-5p), STAT1, α-SMA (α-smooth muscle actin) and proliferating cell nuclear antigen (PCNA). Targetscan and dual-luciferase reporter assay were used to analyze the interaction between miR-150-5p and STAT1. The viability, migration, cell cycle and α-SMA and PCNA expressions in oxidized low-density lipoprotein (ox-LDL)-stimulated primary human aortic smooth muscle cells (ASMCs) were assessed using molecular experiments. miR-150-5p was reduced in both AS mice and ox-LDL-stimulated human aortic smooth muscle cells but STAT1 had the opposite effect. The miR‐150‐5p inhibitor alleviated the increase of lipid plaque and reduced collagen accumulation in the aortas during AS. Upregulation of α-SMA and PCNA was reversed by miR-150-5p upregulation. STAT1 was targeted by miR‐150‐5p, and overexpressed miR-150-5p weakened the ox-LDL-induced increase of viability and migration abilities and blocked cell cycle in ASMCs, but overexpressed STAT1 blocked the effect of the miR‐150‐5p mimic. This paper demonstrates that miR-150-5p has potential as a therapeutic target in AS, with plaque stabilization by regulating ASMC proliferation and migration via STAT1.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次