Foods | |
Starch Molecular Structural Features and Volatile Compounds Affecting the Sensory Properties of Polished Australian Wild Rice | |
Yingting Zhao1  Keyu Tao1  Robert G. Gilbert1  Heather E. Smyth2  Robert J. Henry2  | |
[1] Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China;Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; | |
关键词: rice; descriptive analysis; molecular fine structure; sensory; | |
DOI : 10.3390/foods11040511 | |
来源: DOAJ |
【 摘 要 】
Cooked high-amylose rices, such as Australian wild rice (AWR) varieties, have slower digestion rates, which is nutritionally advantageous, but may have inferior eating qualities. Here, a comparison is made between sensory and starch molecular fine structure properties, and volatile compounds, of polished AWR varieties and some commercial rices (CRs). Starch structural parameters for amylopectin (Ap) and amylose (Am) were obtained using fluorophore-assisted capillary electrophoresis and size-exclusion chromatography. Volatile compounds were putatively using headspace solid-phase microextraction with gas chromatography-mass spectrometry. Sensory properties were evaluated by a trained panel. AWR had a disintegration texture similar to that of Doongara rice, while AWR had a resinous, plastic aroma different from those of commercial rice varieties. Disintegration texture was affected by the amounts of Ap short chains, resinous aroma by 2-heptenal, nonadecane, 2h-pyran, tetrahydro-2-(12-pentadecynyloxy)-, and estra-1,3,5(10)-trien-17β-ol, and plastic aroma by 2-myristynoyl pantetheine, cis-7-hexadecenoic acid, and estra-1,3,5(10)-trien-17β-ol. These findings suggest that sensory properties and starch structures of AWR varieties support their potential for commercialization.
【 授权许可】
Unknown