期刊论文详细信息
Symmetry
Energy Efficiency Enhanced Landing Strategy for Manned eVTOLs Using L1 Adaptive Control
Chi Zhang1  Zian Wang2  Shengchen Mao2  Zheng Gong2  Jun He3 
[1] COMAC Beijing Aircraft Technology Research Institute, Beijing 100083, China;School of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China;
关键词: eVTOL;    flight dynamics modeling;    L1 adaptive control;    guidance;    deceleration and landing strategy;    energy efficiency;   
DOI  :  10.3390/sym13112125
来源: DOAJ
【 摘 要 】

A new landing strategy is presented for manned electric vertical takeoff and landing (eVTOL) vehicles, using a roll maneuver to obtain a trajectory in the horizontal plane. This strategy rejects the altitude surging in the landing process, which is the fatal drawback of the conventional jumping strategy. The strategy leads to a smoother transition from the wing-borne mode to the thrust-borne mode, and has a higher energy efficiency, meaning a better flight experience and higher economic performance. To employ the strategy, a five-stage maneuver is designed, using the lateral maneuver instead of longitudinal climbing. Additionally, a control system based on L1 adaptive control theory is designed to assist manned driving or execute flight missions independently, consisting of the guidance logic, stability augmentation system and flight management unit. The strategy is verified with the ET120 platform, by Monte Carlo simulation for robustness and safety performance, and an experiment was performed to compare the benefits with conventional landing strategies. The results show that the performance of the control system is robust enough to reduce perturbation by at least 20% in all modeling parameters, and ensures consistent dynamic characteristics between different flight modes. Additionally, the strategy successfully avoids climbing during the landing process with a smooth trajectory, and reduces the energy consumed for landing by 64%.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次