期刊论文详细信息
Sensors
Automatic and Efficient Fall Risk Assessment Based on Machine Learning
Nadav Eichler1  Hagit Hel-Or1  Ilan Shimshoni2  Shmuel Raz2  Daphna Livne3  Adi Toledano-Shubi3 
[1] Department of Computer Science, University of Haifa, Haifa 3498838, Israel;Department of Information Systems, University of Haifa, Haifa 3498838, Israel;Physiotherapy Institute, Galilee Medical Center, Chicago, IL 60639, USA;
关键词: fall risk detection;    balance;    Berg Balance Scale;    human tracking;    elderly;    telemedicine;   
DOI  :  10.3390/s22041557
来源: DOAJ
【 摘 要 】

Automating fall risk assessment, in an efficient, non-invasive manner, specifically in the elderly population, serves as an efficient means for implementing wide screening of individuals for fall risk and determining their need for participation in fall prevention programs. We present an automated and efficient system for fall risk assessment based on a multi-depth camera human motion tracking system, which captures patients performing the well-known and validated Berg Balance Scale (BBS). Trained machine learning classifiers predict the patient’s 14 scores of the BBS by extracting spatio-temporal features from the captured human motion records. Additionally, we used machine learning tools to develop fall risk predictors that enable reducing the number of BBS tasks required to assess fall risk, from 14 to 4–6 tasks, without compromising the quality and accuracy of the BBS assessment. The reduced battery, termed Efficient-BBS (E-BBS), can be performed by physiotherapists in a traditional setting or deployed using our automated system, allowing an efficient and effective BBS evaluation. We report on a pilot study, run in a major hospital, including accuracy and statistical evaluations. We show the accuracy and confidence levels of the E-BBS, as well as the average number of BBS tasks required to reach the accuracy thresholds. The trained E-BBS system was shown to reduce the number of tasks in the BBS test by approximately 50% while maintaining 97% accuracy. The presented approach enables a wide screening of individuals for fall risk in a manner that does not require significant time or resources from the medical community. Furthermore, the technology and machine learning algorithms can be implemented on other batteries of medical tests and evaluations.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次