期刊论文详细信息
Polymers
The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles
Jia Zhao1  Xiaopeng Zhao1  Jianbo Yin1  Chen Zheng1  Qi Lei1 
[1] Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710129, China;
关键词: composite particles;    dielectric polarization rate;    electrorheological responsive polymer;   
DOI  :  10.3390/polym12030703
来源: DOAJ
【 摘 要 】

By using different conductivity of polyaniline as filler, a kind of poly(ionic liquid)/polyaniline composite particles was synthesized to investigate the influence of dielectric polarization rate difference between filler and matrix on the electrorheological response and flow stability of composite-based electrorheological fluids under simultaneous effect of shear and electric fields. The composite particles were prepared by a post ion-exchange procedure and then treated by ammonia or hydrazine to obtain different conductivity of polyaniline. Their electrorheological response was measured by dispersing these composite particles in insulating carrier liquid under electric fields. It showed that the composite particles treated by ammonia had the strongest electrorheological response and most stable flow behavior in a broad shear rate region from 0.5 s−1 to 1000 s−1. By using dielectric spectroscopy, it found that the enhanced electrorheological response with stable flow depended on the matching degree of the dielectric polarization rates between poly(ionic liquid) matrix and polyaniline filler. The closer their polarization rates are, the more stable the flow curves are. These results are helpful to design optimal composite-based electrorheological materials with enhanced and stable ER performance.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次