期刊论文详细信息
Plants
The Optical Response of a Mediterranean Shrubland to Climate Change: Hyperspectral Reflectance Measurements during Spring
Jean-Philippe Mevy1  Marine Boiteau-Barral1  Charlotte Biryol1  Franco Miglietta2 
[1] IMBE-UMR CNRS 7263/IRD 237, Aix-Marseille Université, 13331 Marseille, France;Institute of Biometeorology, National Research Council (CNR-IBIMET), Via Caproni 8, 50145 Firenze, Italy;
关键词: reflectance spectrum;    drought adaptation;    shrub;    Mediterranean;    plant–plant interaction;    vegetation indices;   
DOI  :  10.3390/plants11040505
来源: DOAJ
【 摘 要 】

Remote sensing techniques in terms of monitoring plants’ responses to environmental constraints have gained much attention during recent decades. Among these constraints, climate change appears to be one of the major challenges in the Mediterranean region. In this study, the main goal was to determine how field spectrometry could improve remote sensing study of a Mediterranean shrubland submitted to climate aridification. We provided the spectral signature of three common plants of the Mediterranean garrigue: Cistus albidus, Quercus coccifera, and Rosmarinus officinalis. The pattern of these spectra changed depending on the presence of a neighboring plant species and water availability. Indeed, the normalized water absorption reflectance (R975/R900) tended to decrease for each species in trispecific associations (11–26%). This clearly indicates that multispecific plant communities will better resist climate aridification compared to monospecific stands. While Q. coccifera seemed to be more sensible to competition for water resources, C. albidus exhibited a facilitation effect on R. officinalis in trispecific assemblage. Among the 17 vegetation indices tested, we found that the pigment pheophytinization index (NPQI) was a relevant parameter to characterize plant–plant coexistence. This work also showed that some vegetation indices known as indicators of water and pigment contents could also discriminate plant associations, namely RGR (Red Green Ratio), WI (Water Index), Red Edge Model, NDWI1240 (Normalized Difference Water Index), and PRI (Photochemical Reflectance Index). The latter was shown to be linearly and negatively correlated to the ratio of R975/R900, an indicator of water status.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次