期刊论文详细信息
Journal of Inequalities and Applications
Wavelet optimal estimations for a two-dimensional continuous-discrete density function over Lp $L^{p}$ risk
Jinru Wang1  Xiaochen Zeng1  Lin Hu2 
[1] Department of Applied Mathematics, Beijing University of Technology;Department of Basic Courses, Beijing Union University;
关键词: Wavelets;    Density estimation;    Continuous-discrete density;    Optimality;   
DOI  :  10.1186/s13660-018-1868-7
来源: DOAJ
【 摘 要 】

Abstract The mixed continuous-discrete density model plays an important role in reliability, finance, biostatistics, and economics. Using wavelets methods, Chesneau, Dewan, and Doosti provide upper bounds of wavelet estimations on L2 $L^{2}$ risk for a two-dimensional continuous-discrete density function over Besov spaces Br,qs $B^{s}_{r,q}$. This paper deals with Lp $L^{p}$ ( 1≤p<∞ $1\leq p < \infty$) risk estimations over Besov space, which generalizes Chesneau–Dewan–Doosti’s theorems. In addition, we firstly provide a lower bound of Lp $L^{p}$ risk. It turns out that the linear wavelet estimator attains the optimal convergence rate for r≥p $r \geq p$, and the nonlinear one offers optimal estimation up to a logarithmic factor.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次